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9 The Number of Embeddings of Integral
Quadratic Forms. II*)

By Rick MIRANDA**) and David R. MORRISON***)

(Communicated by Kunihiko KODAIRA, M. ,. A., Jan. 13, 1986)

This is a continuation of our previous note [5], to which we refer the
reader for definitions and notation.

1. Introduction. Let " M-+L be a primitive embedding from a
nondegenerate integral quadratic form M into an indefinite unimodular
integral quadratic form L. In [5] we showed that the number of equi-
valence classes of primitive embeddings from M into L coincides with a
certain invariant e(N)of the orthogonal complement N of M in L. (We
also proved a similar statement for (a, )-equivalence classes and the in-
variant e.(N).) In this note, we give an effective procedure for calculating
these invariants e(N) and e.(N) when N is indefinite with rank at least
three. This extends some work of Nikulin [6], who gave sufficient condi-
tions for e(N) to be 1 (under the same hypotheses on N). The proofs,
together with some applications to algebraic geometry, will be given else-
where.

2. The structure of finite quadratic forms. A finite quadratic form
is a finite abelian group G together with a map q’G--+Q/Z such that the
induced map b’GxG--+Q/Z defined by b(x, y)=q(x+y)--q(x)--q(y) is Z-
bilinear, and such that q(nx)=nq(x) for all n e Z and x e G. G is called
nondegenerate if the adjoint map Ad b G-+Horn (G, Q/z) of the associated
bilinear form b is injective.

We recall from Wall [8] and Durfee [2] the basic structure of a non-
degenerate finite quadratic form G, using the notation of Brieskorn [1].
The Sylow decomposition G=@p Gp is an orthogonal direct sum decomposi-
tion with respect to. the form q; moreover, each Sylow subgroup G, admits
an orthogonal direct sum decomposition into groups of ranks one and two
of the following types."
( If p:/:2 and = _+1, w, denotes Z/pZ with a generator x such that

the quadratic map is given by q(x)=p-u (modZ) for some u e Z

with(u,p) Xand(2--;) ( ), where is the Legendre symbol.

(ii) If e (Z/8Z), w,, denotes Z/2Z with a generator x such that q(x)
=2--u (mod Z) for some u e Z with u (mod 8).
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(iii) U (or v) denotes Z/2ZXZ/2Zwith a basis x, y such that q(x)--q(y)
--0 and q(x+y)=2- (modZ) (or q(x)=q(y)=q(x+y)=2- (modZ)).

Note that when p=/=2, this implies that G can be diagonalized (it is a direct
sum of the rank one groups w,).

When p=2, there are in general many ways. of decomposing G. into
an orthogonal direct sum o groups of ranks one and two. The following
proposition singles out a special kind of decomposition which will be useful
later.

Proposition. A nondegenerate finite quadratic form on a 2-group G
has an orthogonal direct sum decomposition

n(k) m(k)G(R) (u (R)v (R)w(k))
kl

such that m(k)_l, rank (w(k))_2, and w(k) is a sum of forms of type w,.
The proof, which we omit, is entirely analogous to that of a lemma

of Miranda [4].
A fundamental invariant of a nondegenerate finite quadratic orm on

a p-group G is the discriminant disc (G,) introduced by Nikulin [6]. This
is an element of the group Z/(Z) of p-adic integers modulo squares of
units; it is always defined when p=/=2, and is defined for p=2 if and only
if w(1)=0 2or a decomposition of G. as in the proposition.

We recall the definition of the discriminant for the forms o ranks one
and two"

(i) I p=/=2, disc(w,)=pu, where ueZ with (, p)=l and

( ii ) I k_2, disc (w,)=2u, where u e Z with u-- (mod 8).
(iii) disc (u-) 2, disc (v)=3.2.

The discriminant multiplies under direct sum, so the above data is
sufficient to compute disc (G) from any decomposition of G into orms of
ranks one and two.

:. The computation of e(N) and e(N). Let N be a no.ndegenerate
integral quadratic form, let G=Coker(Ad b’N--Hom (N,Z)) be the
discriminant-form o. N, which is a nondegenerate finite quadratic orm,
and let G# be the p-Sylow subgroup o,f G. For each prime number p, we
will define two invariants of N and p, which can be effectively computed
once N and G are known. These invariants are a natural number e(N)
and a subgroup 2(N) o.f {+,--}{+,--}. We describe 2(N) by giving
its order f(N), and, in case the order is 2, by specifying the nontrivial

element, which we call the type.

Definition. Let N be a nondegenerate integral quadratic form and
p a prime number. Let l(G) denote the minimum number o, generators
of G, and let disc (N) denote the discriminant o N, which is the deter-

minant o the matrix of the bilinear form b of N in any basis.
(i) If p=/=2, let zl=disc(N)/disc(G). Then e=%(N), f=f(N), and

the type o.f 2(N) (when f(N)=2) are defined by Table I.
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Table I

rank (N)-l(GN) pmod 4 ep fp type

>_2

--1

4

(/, --)

(--, /)

(/, --)

(ii) If p=2, choose a decomposition of G as in Proposition, let s(/)=
n(k)+m(k) for k_l, and let s(O)=(1/2)(rank(N)--l(G)). If s(0)=
s(1)--0 and w(1) has rank 1, let

G’- (R) (u(R)v(R)w(k))

and define z=disc(N)/2 disc (G’). Then e.=e.(N), f=f(N) and the
type of (N2) (when f(N)=2) are defined by Table II.

Theorem. Let N be a nondegenerate integral quadratic form which
is indefinite and has rank at least 3. Let e(N) and 2(N) be as defined
above, and let 2(N)= 2(N). Then
( ) e/ (N)= 1-[ e(N). (All but finitely many o.f the terms in this pro.duct

are 1).
(ii) If 2(N) {+, } +, then e(N) e.(N) e (N) for all , e

+, -}.
(iii) If 2(N) {(+, +), (a, )} for some (, ) :/: (+, +), then e.(N) e (N),

while e(N)--e(N)=(1/2)e//(N) for (, ):/:(, ), (+, +).
(iv) If 2(N)={(+, +)}, then e(N)=(1/4)e//(N) and

e (N) e_ (N) e_ (N) (1/2)e (N).
The proof will be given elsewhere. The main tools used in the proof

are Kneser’s strong approximation theorem or the spin group [3], and a
refinement o.f the factorization theorem for lcal integral ismetries due
to. O’Meara and Pollak [7].
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Table II

s(0)

0

w(1) s(1) w(2)

rk>O

rk---2

rk=2

s(2)

>0

rk>O

rk>O

mod 4 mod 8

2

2

1

1

rk<_l

1

2

4

4

4

4

1, 3 2 2

5, 7 2 2

3, 5 2 2

1, 7 2 4

2 2

2 2

2 2

2 2

1 4 2

7 4 2

type

3, 5 4 1

2 2

4 1

4 1

(-, +)

(-,-)

(+, -)

(-, +)

(-,-)

(-, +)

(-,-)

(-, +)

(-,-)

(+, -)
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