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9. The Number of Embeddings of Integral
Quadratic Forms. II"

By Rick MIRANDA**) and David R. MORRISON***)

(Communicated by Kunihiko KODAIRA, M. J. A., Jan. 13, 1986)

This is a continuation of our previous note [5], to which we refer the
reader for definitions and notation.

1. Introduction. Let ¢:M—L be a primitive embedding from a
nondegenerate integral quadratic form M into an indefinite unimodular
integral quadratic form L. In [5] we showed that the number of equi-
valence classes of primitive embeddings from M into L coincides with a
certain invariant e(N) of the orthogonal complement N of M in L. (We
also proved a similar statement for («, f)-equivalence classes and the in-
variant e,;(N).) In this note, we give an effective procedure for calculating
these invariants e(N) and e, (N) when N is indefinite with rank at least
three. This extends some work of Nikulin [6], who gave sufficient condi-
tions for e(N) to be 1 (under the same hypotheses on N). The proofs,
together with some applications to algebraic geometry, will be given else-
where.

2. The structure of finite quadratic forms. A finite quadratic form
is a finite abelian group G together with a map ¢ : G—@Q/Z such that the
induced map b:GXG—Q/Z defined by b(x, y)=qx+y)—q(x)—q¥y) is Z-
bilinear, and such that q(nx)=nq(x) for all ne Z and x e G. G is called
nondegenerate if the adjoint map Ad b : G—Hom (G, Q/Z) of the associated
bilinear form b is injective.

We recall from Wall [8] and Durfee [2] the basic structure of a non-
degenerate finite quadratic form G, using the notation of Brieskorn [1].
The Sylow decomposition G=®, G, is an orthogonal direct sum decomposi-
tion with respect to the form ¢; moreover, each Sylow subgroup G, admits
an orthogonal direct sum decomposition into groups of ranks one and two
of the following types :

(i) If p#2ande==+1, w;, denotes Z/p*Z with a generator x such that
the quadratic map is given by q(x)=p *u (mod Z) for some uecZ

with (4, p)=1 and <E@}_>___e, where <—> is the Legendre symbal.
Y4

(ii) If ee(Z/82)*, w;, denotes Z/2*Z with a generator x such that q(x)
=2"%" (mod Z) for some u € Z with u=e (mod 8).
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dii)  u, (or v,) denotes Z/2*Z X Z/2*Z with a basis z, y such that q(x)=q(y)

=0 and q(z+¥)=2"" (mod Z) (or ¢(x)=q(¥y)=q(x+y)=2"" (mod Z)).
Note that when p+2, this implies that G, can be diagonalized (it is a direct
sum of the rank one groups wj ).

When p=2, there are in general many ways of decomposing G, into
an orthogonal direct sum of groups of ranks one and two. The following
proposition singles out a special kind of decomposition which will be useful
later.

Proposition. A nondegenerate finite quadratic form on a 2-group G,
has an orthogonal direct sum decomposition

G,=® (P Dv®Dw(k))

k21

such that m(k)<1, rank (w(k))<2, and w(k) is a sum of forms of type wj ;.

The proof, which we omit, is entirely analogous to that of a lemma
of Miranda [4].

A fundamental invariant of a nondegenerate finite quadratic form on
a p-group G, is the discriminant disc (G,) introduced by Nikulin [6]. This
is an element of the group Z,/(Z})* of p-adic integers modulo squares of
units; it is always defined when p=2, and is defined for p=2 if and only
if w(1)=0 for a decomposition of G, as in the proposition.

We recall the definition of the discriminant for the forms of ranks one
and two :

(i) If p#2, disc(ws ) =p*u, where u € Z, with (4, p)=1 and (l)=e.
Y4

(i) If k>2, disc (ws ;) =2%u, where u € Z, with u=e¢ (mod 8).
(iii)  dise (u)=2%, disc (v,)=38-2%.

The discriminant multiplies under direct sum, so the above data is
sufficient to compute disc (G,) from any decomposition of G, into forms of
ranks one and two.

3. The computation of e(N) and e,,(N). Let N be a nondegenerate
integral quadratic form, let Gy=Coker (Adb: N—Hom (N, Z)) be the
discriminant-form of N, which is a nondegenerate finite quadratic form,
and let G, be the p-Sylow subgroup of G. For each prime number p, we
will define two invariants of N and p, which can be effectively computed
once N and G are known. These invariants are a natural number e, (N)
and a subgroup S(N,) of {4+, —}x{+, —}. We describe Z(NV,) by giving
its order f,(N), and, in case the order is 2, by specifying the nontrivial
element, which we call the type.

Definition. Let N be a nondegenerate integral quadratic form and
p a prime number. Let I(G,) denote the minimum number of generators
of Gy,, and let disc (N) denote the discriminant of N, which is the deter-
minant of the matrix of the bilinear form b of N in any basis.

(i) If p#2, let 4=disc (N)/disc(Gy,). Then e,=e,(N), f,=/,(N), and
the type of S(NV,) (when f,(N)=2) are defined by Table I.
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Table I
24
rank (N)—U(Gw,) pmod 4 <T) ep fo type
>2 1 4
1 2 4
1
1
3
0
3 4 1

(ii) If p=2, choose a decomposition of G, as in Proposition, let s(k)=
n(k)+m(k) for k>1, and let s(0)=(1/2)(rank (N)—U(Gy,). If s(0)=
$(1)=0 and w() has rank 1, let

G'= k@ (U PV Dw(k))

and define 4=disc (N)/2 disc (G’). Then e,=e,(N), f,=f.(N) and the
type of 2(N,) (when f,(N)=2) are defined by Table II.

Theorem. Let N be a nondegenerate integral quadratic form which
is indefinite and has rank at least 3. Let e, (N) and 3(N,) be as defined
above, and let S(N)=,2(N,). Then
(i) e,.(N)=T[],e,(N). (Al dbut finitely many of the terms in this product

are 1).
(ii) If S(N)={+, =} x{+, —} then e(N)=e,;(N)=e, . (N) for all o, e
{+’ "'}-
di) If SN ={(+, +), (& P} for some (e, H)#(+, +), then e ,(N)=e, ,(N),
while e(N)=e,(N)=(1/2)e., ,(N) for (I, 5)# (e, §), (+, +).
(iv) If SN)={(+, +)}, then eN)=(1/4e, ,(N) and
e..(N)y=e_.N)=c__(N)=(1/2)e. ().

The proof will be given elsewhere. The main tools used in the proof
are Kneser’s strong approximation theorem for the spin group [3], and a
refinement of the factorization theorem for local integral isometries due
to O’Meara and Pollak [7].
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Table II
SO | w® || w@ | s@ | w@ | 27, | Aol e | f| type
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rk>0 1 4 §
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h 0 . 571 21 2 | (= -
3, 5 2 2 (+y _)
0 ez—y |——
w31 1,7 2 4
0
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rk>0
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