7. Simple Vector Bundles over Symplectic Kähler Manifolds

By Shoshichi Kobayashi*)
Department of Mathematics, University of California, Berkeley
(Communicated by Kunihiko Kodara, M. J. A., Jan. 13, 1986)

1. Introduction. In a recent paper [5], Mukai has shown that the moduli space of simple sheaves on an abelian or K3 surface is smooth and has a holomorphic symplectic structure. We extend his result to higher dimensional manifolds by a differential geometric method.

A holomorphic symplectic structure on a complex manifold is given by a closed holomorphic 2-form ω which is non-degenerate in the sense that if $\omega(u, v) = 0$ for all tangent vectors v, then u = 0.

Let M be a compact Kähler manifold of dimension n and E a C^{∞} complex vector bundle of rank r over M. Let $A^{p,q}(E)$ be the space of $C^{\infty}(p,q)$ -forms over M with values in E. A semi-connection in E is a linear map $D'': A^{0,0}(E) \rightarrow A^{0,1}(E)$ such that

$$(1.1) D''(as) = d''a \cdot s + aD''s$$

for all functions a on M and all sections s of E. Let $\mathcal{D}''(E)$ denote the space of semi-connections in E. Every semi-connection D'' extends uniquely to a linear map $D'': A^{p,q}(E) \to A^{p,q+1}(E)$ such that

$$(1.2) D''(\alpha \wedge \sigma) = d''\alpha \wedge \sigma + (-1)^{r}\alpha \wedge D''\sigma$$

for all r-forms α on M and all $\sigma \in A^{p,q}(E)$. In particular,

$$(1.3) N(D'') := D'' \circ D'' : A^{0,0}(E) \longrightarrow A^{0,2}(E),$$

and N(D'') may be considered as an element of $A^{0,2}(\operatorname{End}(E))$. A semi-connection D'' is called a holomorphic structure if N(D'')=0. Let $\mathcal{H}''(E)$ denote the set of holomorphic structures in E. If E is holomorphic, then $d'' \in \mathcal{H}''(E)$. Conversely, every $D'' \in \mathcal{H}''(E)$ comes from a unique holomorphic structure in E. The holomorphic vector bundle defined by D'' is denoted by $E^{D''}$. We call $E^{D''}$ simple if its endomorphisms are all of the form cI_E , where $c \in C$. Let

(1.4)
$$\operatorname{End}^{0}(E^{D''}) = \{ u \in \operatorname{End}(E^{D''}); \operatorname{Tr}(u) = 0 \}.$$

Then $E^{p''}$ is simple if and only if $H^0(M, \operatorname{End}^0(E^{p''})) = 0$. Let S''(E) denote the set of simple holomorphic structures D'' in E.

Let GL(E) be the group of C^{∞} automorphisms of the bundle E. Its Lie algebra $\mathfrak{gl}(E)$ is nothing but $A^{0,0}(\operatorname{End}(E))$. The group GL(E) acts on $\mathfrak{D}''(E)$ by

$$(1.5) D''^f = f^{-1} \circ D'' \circ f \text{for } f \in GL(E), \ D'' \in \mathcal{D}''(E).$$

Then GL(E) leaves $\mathcal{H}''(E)$ and $\mathcal{S}''(E)$ invariant. With the C^{∞} topology, the moduli space $\mathcal{S}''(E)/GL(E)$ of simple holomorphic structures in E is a (possibly non-Hausdorff) complex analytic space. As was shown by Kim

^{*)} Partially supported by NSF Grant DMS 85-02362.

[3], it is a non-singular complex manifold in a neighborhood of $[D''] \in \mathcal{S}''(E)/GL(E)$ if $H^2(M, \operatorname{End}^0(E^{D''}))=0$. This is analogous to Kodaira-Spences-Kuranishi theory of complex structures.

We are now in a position to state our result.

(1.6). Theorem. Let M be a compact Kähler manifold with a holomorphic symplectic structure ω_M . Let E be a C^{∞} complex vector bundle over M and let S''(E)/GL(E) be the moduli space of simple holomorphic vector bundles in E. Let

$$\mathcal{M}(E) = \{ [D''] \in \mathcal{S}''(E) / GL(E) ; H^2(M, \text{End}^0(E^{D''})) = 0 \}$$

so that $\mathcal{M}(E)$ is a non-singular (possibly non-Hausdorff) complex manifold. Then ω_{M} induces in a natural way a holomorphic symplectic structure on $\mathcal{M}(E)$.

If dim M=2, then $H^2(M, \operatorname{End}(E^{D''}))$ is dual to $H^0(M, \operatorname{End}(E^{D''}))$ and hence $\mathcal{M}(E) = \mathcal{S}''(E)/GL(E)$.

- 2. Outline of the proof. The construction of a holomorphic symplectic structure on $\mathcal{M}(E)$ is based on the reduction theorem of Marsden-Weinstein [4]. While their theorem is proved in the differentiable case, we need its holomorphic analogue. So we recall it in the form adapted to our purpose. Let V be a complex Banach manifold with a holomorphic symplectic structure ω_v . Let G be a Banach complex Lie group acting holomorphically on V, leaving ω_v invariant. Let g be the Banach Lie algebra of G and g^* its dual vector space. A moment for the action of G is a holomorphic map $\psi: V \rightarrow g^*$ such that
- (2.1) $\langle a, d\psi_x(v) \rangle = \omega_v(a_x, v)$ for $a \in \mathfrak{g}$, $v \in T_xV$, $x \in V$, where $d\psi_x : T_xV \to \mathfrak{g}^*$ is the differential of ψ at $x, a_x \in T_xV$ is the vector defined by the infinitesimal action of $a \in \mathfrak{g}$, and \langle , \rangle is the dual pairing between \mathfrak{g} and \mathfrak{g}^* .
- (a) Assume that ψ is equivariant with respect to the coadjoint action of G, i.e.,
- (2.2) $\psi(g(x)) = (\operatorname{Ad} g)^*(\psi(x)) \quad \text{for } g \in G, \ x \in V.$
- Then G leaves $\psi^{-1}(0) \subset V$ invariant. The quotient space $W = \psi^{-1}(0)/G$ is called the *reduced phase space*. Let $j : \psi^{-1}(0) \to V$ be the natural injection and $\pi : \psi^{-1}(0) \to W$ the projection.
- (b) Assume that $0 \in \mathfrak{g}^*$ is a weakly regular value of ψ in the sense that (i) $\psi^{-1}(0)$ is a submanifold of V and (ii) for every $x \in \psi^{-1}(0)$, the inclusion $T_x(\psi^{-1}(0)) \subset \operatorname{Ker}(d\psi_x)$ is an equality.
- (c) Assume that the action of G on $\psi^{-1}(0)$ is free and that at each point $x \in \psi^{-1}(0)$ there is a holomorphic "slice section" $S_x \subset \psi^{-1}(0)$ for the action.

Then the theorem says that under these assumptions W is a (possibly non-Hausdorff) complex manifold and there is a unique holomorphic symplectic structure ω_W on W such that $\pi^*\omega_W=j^*\omega_V$. Marsden and Weinstein assume that the action of G is proper. We assume instead only the existence of a slice at each point of $\psi^{-1}(0)$. So our manifold W may not be Hausdorff.

Now we apply the theorem to the following situation. If a semi-connection $D'' \in \mathcal{D}''(E)$ is chosen, every other element of $\mathcal{D}''(E)$ is of the form $D'' + \alpha$, where $\alpha \in A^{0,1}(\operatorname{End}(E))$. So $\mathcal{D}''(E)$ is an affine space, and its tangent space at D'' can be identified with $A^{0,1}(\operatorname{End}(E))$. Taking $k > \dim M$, we consider the Sobolev space $L^2_k(D''(E))$. The action of GL(E) is not effective; an element $f \in GL(E)$ acts trivially on $\mathcal{D}''(E)$ if and only if $f = cI_E$ with $c \in C^* = C - \{0\}$. Let

$$V = L_k^2(\mathcal{D}''(E)), \quad G = L_{k+1}^2(GL(E)/C^*), \quad g = L_{k+1}^2(\mathfrak{gl}(E)/C).$$

Then G acts effectively and smoothly on V. Using a holomorphic symplectic structure ω_M of M, we define a holomorphic symplectic structure ω_V on V by

$$(2.3) \omega_{\scriptscriptstyle V}(\alpha,\,\beta) = \int_{\scriptscriptstyle M} {\rm Tr}\,(\alpha \wedge \beta) \wedge \omega_{\scriptscriptstyle M}^{\scriptscriptstyle m} \wedge \overline{\omega}_{\scriptscriptstyle M}^{\scriptscriptstyle m-1}, \alpha,\,\beta \in T_{\scriptscriptstyle D''}(V),$$

where α and β are considered as elements of $L_k^2(A^{0,1}(\operatorname{End}(E))) \approx T_{D''}(V)$ and 2m is the dimension of M. We define a moment $\psi: V \to \mathfrak{g}^*$ by

$$(2.4) \qquad \langle a, \psi(D'') \rangle = - \int_{M} \operatorname{Tr} \left(a \circ N(D'') \right) \wedge \omega_{M}^{m} \wedge \overline{\omega}_{M}^{m-1}, \quad a \in \mathfrak{g}, \quad D'' \in V.$$

We verify (2.1) for ψ using the following formulas.

$$(2.5) \partial_t N(D'' + t\beta)|_{t=0} = D''\beta, \text{for } \beta \in L^2_k(A^{0,1}(\operatorname{End}(E))),$$

$$(2.6) \partial_t(e^{-at} \circ D'' \circ e^{at})|_{t=0} = D''a, \text{for } a \in \mathfrak{g}.$$

The latter means that D''a is the tangent vector $a_{D''} \in T_{D''}(V)$ induced by the infinitesimal action of $a \in \mathfrak{g}$. Now we have

$$\langle a, d\psi_{D''}(\beta) \rangle = -\partial_t \int_M \operatorname{Tr} \left(a \circ N(D'' + t\beta) \right) \wedge \omega_M^m \wedge \overline{\omega}_M^{m-1} \big|_{t=0} \\
= -\int_M \operatorname{Tr} \left(a \circ D''\beta \right) \wedge \omega_M^m \wedge \overline{\omega}_M^{m-1} \\
= \int_M \operatorname{Tr} \left(D''a \wedge \beta \right) \wedge \omega_M^m \wedge \overline{\omega}_M^{m-1} \\
= \omega_V(D''a, \beta) = \omega_V(a_{D''}, \beta).$$

This verifies (2.1) for ψ . From $\operatorname{Tr}(a \circ N(D''^{f})) = \operatorname{Tr}(a \circ f^{-1} \circ N(D'') \circ f) = \operatorname{Tr}(faf^{-1} \circ N(D''))$, we obtain

(2.8)
$$\langle a, \psi(D^{\prime\prime\prime f}) \rangle = \langle f a f^{-1}, \psi(D^{\prime\prime}) \rangle,$$

showing that ψ is coad (*G*)-equivariant.

To verify (b) we have to take a certain open subset V' of V. Let $D'' \in \psi^{-1}(0) = \{D'' \in V \; ; \; N(D'') = 0\}$. If $\langle a, d\psi_{D''}(\beta) \rangle = 0$ for all $\beta \in T_{D''}(V)$, then (2.7) implies D''a = 0. So we consider the open subset V' of V consisting of D'' such that a = 0 is the only solution of D''a = 0 in $g = L_{k+1}^2(A^{0,0}(\operatorname{End}^0(E)))$. Then $0 \in \mathfrak{g}^*$ is a weakly regular value of $\psi|_{V'}$ and

(2.9)
$$\psi^{-1}(0) \cap V' = \{D'' \in V ; N(D'') = 0 \text{ and } E^{D''} \text{ is simple} \}.$$

Let $f \in G$ and $D'' \in V'$. If $D'''^f = D''$, i.e., $D'' \circ f = f \circ D''$, then D''f = 0 and hence $f = cI_E$ with $c \in C^*$, showing that G acts freely on V.

Finally, we define a slice $S_{D''}$ through D'' by

$$(2.10) S_{D''} = \{D'' + \alpha \in V; D''\alpha + \alpha \wedge \alpha = 0 \text{ and } D''^*\alpha = 0\},$$

where D''^* is the adjoint of D''. Then in a neighborhood of D'' for which $H^2(M, \operatorname{End}^0(E^{D''})) = 0$, the slice $S_{D''}$ is a non-singular complex submanifold of V.

Remark. In Atiyah-Bott [1], the original Marsden-Weinstein theorem for the real case is used to construct a real symplectic structure or Kähler form on the moduli space of stable bundles over a curve. In [2] Itoh constructs also a Kähler form on the moduli space of anti-self-dual connections on a compact Kähler surface using slices.

The Kähler metric of M induces a Kähler metric on the non-singular part of the moduli space $\hat{\mathcal{M}}(E)$ ($\subset \mathcal{M}(E)$) of irreducible Einstein-Hermitian connections. If the metric on M is Ricci-flat so that the symplectic form ω_M is parallel, so is the induced Kähler metric on $\hat{\mathcal{M}}(E)$.

References

- [1] M. F. Atiyah and R. Bott: The Yang-Mills equations over Riemann surfaces. Phil. Trans. Roy. Soc. London, A308, 523-615 (1982).
- [2] M. Itoh: Geometry of anti-self-dual connections and Kuranishi map. Berkeley, September 1985 (preprint).
- [3] H-J. Kim: Hermitian-Einstein connections—A moduli problem. Berkeley, October 1985 (preprint).
- [4] J. Marsden and A. D. Weinstein: Reduction of symplectic manifolds with symmetry. Reports on Math. Physics, 5, 121-130 (1974).
- [5] S. Mukai: Symplectic structure of the moduli space of sheaves on an abelian or K3 surfaces. Inventiones Math. (to appear).