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1. Wave forms. We study wave orms on O(1, q+l) and their
Dirichlet series of two types. Details are described in [5].

Let So e M(q, Q)be a symmetric positive definite matrix of size q0,

and put S= So which is a symmetric matrix of signature (1, q/l).
1

Let G be the reductive algebraic group over Q whose Q-rational points are
GQ--- {g e GL (q -t-2, Q)ltgSg ,(g)S or ,(g) e Q). Each element g e G is

denoted by g e } q. The semi-simple part of G is G { e G ()-- 1}.
}1

Put P= e e G which is a minimal parabolic subgroup of G defined
0

over , and P has the decomposition P=NAM where

N= 1 eG A= 1 eG M= e
0 0 0

We have an isomorphism n" Q >No over Q which is given by

n(x)--(i _xSox_(101/2)xSx)lx
Let Go be the algebraic group over Q whose Q-rational points are Go,o
--{e e GL(q, Q) IteSoe--(e)So or (e) Q, det (e)=(e)n i q is even}. The
adelization of G (resp. G, P, etc.) over Q is denoted by G (resp. G, P,,
etc.).

Let Lo be a Z-lattice in Q" which is maximal integral with respect to

So, and purL= y eQq+2]xeZ, yeLo, zZ ThenLis a Z-lattice in
z

Qq/2 which is maximal integral with respect to S. Put K--{g Gp ]g(L)
=L} or each primes p of Q with L-L(R)z Z, and put

K= g Glg So g= So
1 1

Then K= ]-] K is a compact subgroup o G,. Put U= {e e Go, e(Lo,) Lo,,}
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0r each primes p of Q with L0.,=L0(R)zZ, and U= U is an open com-

pact subgroup o the finite part Go, o Go.. We put K--K G.
Take a continuous unitary character w o the idle class group Q/Q,

and a complex number p. A wave form of type (, p) is a continuous
C-valued unction on G satisfying the ollowing 2our conditions; 1)
(xYgk)=(x)(g) or all x e Q, e GQ, k e K, 2) is real analytic with
respect to the infinite part o2 G, 3) D={p-(q/2)}O where D=2(q--1)
the Casimir element or Lie(G)C, 4) slowly increasing. We denote
by A(w, p) the C-vector space of the wave orms of type (w, p), which is
finite dimensional. Each e A(w, p) has the Fourier expansion

(n(x)g)= u(g)(tuSox)
uQa

where is the continuous unitary character of Q/Q such that (x)
=exp (--2J- lx). For each 0u e Q, we have (g)=C(, gy)W,.(g)
where gf (resp. g) is the finite part (resp. infinite part) o g e G and W,.
is a real analytic unction on G such that

y-
with the modified Bessel unction K,(x) (see [3] p. 66). By virtue of the
Iwasawa decomposition o G, the unction W,. is uniquely determined.
We denote by S(w, p)={ e A(w, p)[0(g)=0 or all g e G} the C-vector
space of the cuspidal wave orms. We notice that A(w, p)0 only if
=[ [ with the absolute value ] o the idles and a purely imaginary
complex number a.

2. Mellin transformation. For a wave orm e A(w, p) and a C-
valued continuous function on G0.G0./U, we put

Z(s , ) 2(’/)-’

X C , e (e)l,(e)]}/:)(-) luSou
where Fq.,(s)=(2)-F((1/2)(s+q/2+p))F((1/2)(s+q/2--p)) is a product of
F-functions, is the summation over the representatives o Go.Go./U
which is a finite set, and] ] is the finite part of] ]. Then Z(s; , 0) is a
Dirichlet series which converges absolutely or Re(s)}}0. By means of
the Mellin transformation o , we have

Theorem 1. Z(s , ) has a meromorphic continuation to the whole
s-plane with a functional equation Z(s , 0) Z(--s , ) where (g)
=(g)w(,(g)-) and (e)=O(,(e)-e). Moreo.ver Z(s; , ) is holomorphic
except for the possible poles at s=q/2p of order at most 1 if pO
(2 if p=0). Z(s , 0) is entire if is cuspidal.

Remark 1. When is the characteristic unction of Go.QU in G0.,
Theorem 1 gives the meromorphic continuation and the unctional equa-
tion of the Dirichlet series
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which is treated by Maass [2].
3. RankinoSelberg method. Throughout this section, we suppose

thatS=(0S )Imp’q-m (O<m<q)andthattheZ-latticeLohasanorthogonal

splitting Lo 0,0r"mr"’ (L , L’ -). Put S’= So’ and define the
1

algebraic grous G’, P’, N’, A’, and M’ with respect to S’ as in 1. he
algebraic grou G’ is identified with an algebraic subgrou of G via the
maing

i }1 0 1 q--"
i 0 ]]}1

The compact subgroup K’ of G is defined as in 1 by the Z-lattice L.
Take and fix a C-valued continuos function on MANG/K’.

We ut 0(, )= lal for e c and e e G PK’ with e K’.
0

hen the Nisenstein series associated with and the air (G’, P’) is defined
by

which converges absolutely for Ne()>m/2 and all g e G. I has a mero-

morhie continuation to the whole -lane with a functional equation (see
Arthur [1]).

or a wave form e A(, 0), we ut for each0 q-
C,()=()(, h)(h)

where is the summation over the representatives

which is a finite set. hen we have
Theorem Z. Nor eidal ave orm e S(, O) e have the ol-

lowi Ri-Selberg te idetit

/- ,() x ,o() uS’ (e ()>>0).

When ) is the characteristic function of M(M)OK’) in M), Theo-
rem 2 gives

Corollar7 1. Pot eida ave orm S(, 0), the Diriehet
erie

/ (/

C()(, 1)tuS’u) (Re (s)}} O)

is meromorphic on C.
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If m-----l, the Eisenstein series E(1; s, g) has a simple unctional equa-
tion, and we have

Corollary 2. Suppose m--1. Then for each cuspidal wave form
e S(, 0),

Z(s, ) Z(2s). Fq.,(s) , C(o) (, 1) uS’o’U (Re (s) >> 0)
O=uQq-1

is meromorphic on C with a functional equation

2(1-s, )=vol (R/L)//2 Z(s,
where Z(s)=u-(1/2)sF(s/2)(s).

Remark 2. If re=q--1 and a wave orm e S(w, p) is Hecke eigen,
then the Dirichlet series

oCu,o() uS’u

corresponds to the standard L-function associated with in the sense of
Langlands (see Sugano [4, 3]).

Remark 3. The wave orms on 0(1, 2) (resp. 0(1, 3)) correspond to
automorphic forms on GL (2) over Q (resp. an imaginary quadratic field F)
via the isogeny mapping SO (1, 2)SL (2, R) (resp. SO (1, 3) SL (2, C)).
Then the Dirichlet series defined in 1 corresponds to the standard L-
unction C(f, n)n (resp. C(f, a)N(a)-9 associated with the auto-

O<nZ 0

morphic form f on GL(2) over Q (resp. F). In the case of 0(1, 3), the
Dirichlet series defined in 2 corresponds to the Dirichlet series

C(f, nO)n-.
OnZ
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