33. Wave Forms on $\mathrm{O}(1, q+1)$ and associated Dirichlet Series

By Koichi Takase

Department of Mathematics, Tokyo Institute of Technology
(Communicated by Kunihiko Kodaira, m. J. a., March 12, 1986)
§ 1. Wave forms. We study wave forms on $\mathrm{O}(1, q+1)$ and their Dirichlet series of two types. Details are described in [5].

Let $S_{0} \in M(q, \boldsymbol{Q})$ be a symmetric positive definite matrix of size $q>0$, and put $S=\left({ }_{1} S_{0}^{1}\right)$ which is a symmetric matrix of signature ($1, q+1$). Let \tilde{G} be the reductive algebraic group over \boldsymbol{Q} whose \boldsymbol{Q}-rational points are $\tilde{G}_{\boldsymbol{Q}}=\left\{\left.g \in \operatorname{GL}(q+2, \boldsymbol{Q})\right|^{t} g S g=\nu(g) S\right.$ for $\left.\nu(g) \in \boldsymbol{Q}^{\times}\right\}$. Each element $g \in \tilde{G}$ is denoted by $\left.g=\left(\begin{array}{lll}a & b & c \\ d & e & f \\ h & i & j\end{array}\right)\right\} 1$ \} $\}$. The semi-simple part of \tilde{G} is $G=\{g \in \tilde{G} \mid \nu(g)=1\}$. Put $P=\left\{\left(\begin{array}{lll}a & b & c \\ 0 & e & f \\ 0 & 0 & j\end{array}\right) \in G\right\}$ which is a minimal parabolic subgroup of G defined over \boldsymbol{Q}, and P has the decomposition $P=N A M$ where

$$
N=\left\{\left(\begin{array}{lll}
1 & b & c \\
0 & 1 & f \\
0 & 0 & 1
\end{array}\right) \in G\right\}, \quad A=\left\{\left(\begin{array}{lll}
a & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & j
\end{array}\right) \in G\right\}, \quad M=\left\{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & e & 0 \\
0 & 0 & 1
\end{array}\right) \in G\right\} .
$$

We have an isomorphism $n: \boldsymbol{Q}^{q} \xrightarrow{\sim} N_{Q}$ over \boldsymbol{Q} which is given by

$$
n(x)=\left(\begin{array}{ccc}
1 & -{ }^{t} x S_{0} x & -(1 / 2)^{t} x S_{0} x \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right)
$$

Let \tilde{G}_{0} be the algebraic group over \boldsymbol{Q} whose \boldsymbol{Q}-rational points are $\tilde{G}_{0, \boldsymbol{Q}}$ $=\left\{\left.e \in \operatorname{GL}(q, \boldsymbol{Q})\right|^{t} e S_{0} e=\nu(e) S_{0}\right.$ for $\nu(e) \in \boldsymbol{Q}^{\times}, \operatorname{det}(e)=\nu(e)^{q / 2}$ if q is even $\}$. The adelization of \tilde{G} (resp. G, P, etc.) over \boldsymbol{Q} is denoted by \tilde{G}_{A} (resp. G_{A}, P_{A}, etc.).

Let L_{0} be a Z-lattice in \boldsymbol{Q}^{q} which is maximal integral with respect to S_{0}, and put $L=\left\{\left.\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \boldsymbol{Q}^{q+2} \right\rvert\, x \in \boldsymbol{Z}, y \in L_{0}, z \in \boldsymbol{Z}\right\}$. Then L is a Z-lattice in \boldsymbol{Q}^{q+2} which is maximal integral with respect to S. Put $\tilde{K}_{p}=\left\{g \in \tilde{G}_{p} \mid g\left(L_{p}\right)\right.$ $\left.=L_{p}\right\}$ for each primes p of \boldsymbol{Q} with $L_{p}=L \otimes_{Z} Z_{p}$, and put

$$
\tilde{K}_{\infty}=\left\{\left.g \in \tilde{G}_{\infty}\right|^{t} g\left(\begin{array}{ccc}
1 & & \\
& S_{0} & \\
& & 1
\end{array}\right) g=\left(\begin{array}{lll}
1 & & \\
& S_{0} & \\
& & 1
\end{array}\right)\right\} .
$$

Then $\tilde{K}=\prod_{p \leqq \infty} \tilde{K}_{p}$ is a compact subgroup of \tilde{G}_{A}. Put $\tilde{U}_{p}=\left\{e \in \tilde{G}_{0, p} \mid e\left(L_{0, p}\right)=L_{0, p}\right\}$
for each primes p of \boldsymbol{Q} with $L_{0, p}=L_{0} \otimes_{Z} \boldsymbol{Z}_{p}$, and $\tilde{U}_{f}=\prod_{p<\infty} \tilde{U}_{p}$ is an open compact subgroup of the finite part $\tilde{G}_{0, f}$ of $\tilde{G}_{0,4}$. We put $K=\tilde{K} \cap G_{A}$.

Take a continuous unitary character ω of the idèle class group $\boldsymbol{Q}_{A}^{\times} / \boldsymbol{Q}^{\times}$, and a complex number ρ. A wave form of type (ω, ρ) is a continuous C-valued function Φ on \tilde{G}_{A} satisfying the following four conditions; 1) $\Phi(x \gamma g k)=\omega(x) \Phi(g)$ for all $x \in Q_{A}^{\times}, \gamma \in \widetilde{G}_{Q}, k \in \tilde{K}$, 2) Φ is real analytic with respect to the infinite part of $\left.\tilde{G}_{A}, 3\right) D \Phi=\left\{\rho^{2}-(q / 2)^{2}\right\} \Phi$ where $D=2(q-1)^{\times}$ the Casimir element for $\left.\operatorname{Lie}\left(G_{\infty}\right) \otimes_{R} C, 4\right)$ slowly increasing. We denote by $A(\omega, \rho)$ the C-vector space of the wave forms of type (ω, ρ), which is finite dimensional. Each $\Phi \in A(\omega, \rho)$ has the Fourier expansion

$$
\Phi(n(x) g)=\sum_{u \in \boldsymbol{Q}^{q}} \Phi_{u}(g) \Lambda\left({ }^{t} u S_{0} x\right)
$$

where Λ is the continuous unitary character of $\boldsymbol{Q}_{A} / \boldsymbol{Q}$ such that $\Lambda_{\infty}(x)$ $=\exp (-2 \pi \sqrt{-1} x)$. For each $0 \neq u \in \boldsymbol{Q}^{q}$, we have $\Phi_{u}(g)=C_{u}\left(\Phi, g_{f}\right) W_{\rho, u}\left(g_{\infty}\right)$ where g_{f} (resp. g_{∞}) is the finite part (resp. infinite part) of $g \in \widetilde{G}_{A}$ and $W_{\rho, u}$ is a real analytic function on \tilde{G}_{∞} such that

$$
W_{\rho, u}\left(\left(\begin{array}{lll}
y & & \\
& 1 & \\
& & y^{-1}
\end{array}\right)\right)=K_{\rho}\left(4 \pi\left(\frac{1}{2} t u S_{0} u\right)^{1 / 2} y\right)\left\{4 \pi\left(\frac{1}{2} t S_{0} u\right)^{1 / 2} y\right\}^{q / 2} \quad(0<y \in \boldsymbol{R})
$$

with the modified Bessel function $K_{\rho}(x)$ (see [3] p. 66). By virtue of the Iwasawa decomposition of \tilde{G}_{∞}, the function $W_{\rho, u}$ is uniquely determined. We denote by $S(\omega, \rho)=\left\{\Phi \in A(\omega, \rho) \mid \Phi_{0}(g)=0\right.$ for all $\left.\mathrm{g} \in \tilde{G}_{A}\right\}$ the \boldsymbol{C}-vector space of the cuspidal wave forms. We notice that $A(\omega, \rho) \neq 0$ only if $\omega=| |_{A}^{\alpha}$ with the absolute value $\left|\left.\right|_{A}\right.$ of the idèles and a purely imaginary complex number σ.
§2. Mellin transformation. For a wave form $\Phi \in A(\omega, \rho)$ and a C valued continuous function ϕ on $\tilde{G}_{0, \ell} \backslash \tilde{G}_{0, f} / \tilde{U}_{f}$, we put
$Z(s ; \Phi, \phi)=2^{(1 / 2) q-1} \cdot \Gamma_{q, \rho}(s)$

$$
\times \sum_{0 \neq u \in Q^{q}} \sum_{e} C_{u}\left(\Phi,\left(\begin{array}{cc}
\nu(e) & \\
& e \\
& \\
& \\
&
\end{array}\right)\right) \phi(e)|\nu(e)|_{f}^{1 / 2)(s-\sigma)}\left(\frac{1}{2} t S_{0} u\right)^{-(1 / 2) s}
$$

where $\Gamma_{q, \rho}(s)=(2 \pi)^{-s} \Gamma((1 / 2)(s+q / 2+\rho)) \Gamma((1 / 2)(s+q / 2-\rho))$ is a product of Γ-functions, \sum_{e} is the summation over the representatives of $\tilde{G}_{0, \boldsymbol{Q}} \backslash \tilde{G}_{0, f} / \tilde{U}_{f}$ which is a finite set, and $\left.\left|\left.\right|_{f}\right.$ is the finite part of $|\right|_{A}$. Then $Z(s ; \Phi, \phi)$ is a Dirichlet series which converges absolutely for $\operatorname{Re}(s) \gg 0$. By means of the Mellin transformation of Φ, we have

Theorem 1. $Z(s ; \Phi, \phi)$ has a meromorphic continuation to the whole s-plane with a functional equation $Z(s ; \Phi, \phi)=Z(-s ; \check{\Phi}, \check{\phi})$ where $\check{\Phi}(g)$ $=\Phi(g) \omega\left(\nu(g)^{-1}\right)$ and $\check{\phi}(e)=\phi\left(\nu(e)^{-1} e\right)$. Moreover $Z(s ; \Phi, \phi)$ is holomorphic except for the possible poles at $s= \pm q / 2 \pm \rho$ of order at most 1 if $\rho \neq 0$ (2 if $\rho=0$). $Z(s ; \Phi, \phi)$ is entire if Φ is cuspidal.

Remark 1. When ϕ is the characteristic function of $\tilde{G}_{0, \boldsymbol{Q}} \tilde{U}_{f}$ in $\tilde{G}_{0, f}$, Theorem 1 gives the meromorphic continuation and the functional equation of the Dirichlet series

$$
\sum_{0 \neq u \in Q^{q}} C_{u}(\Phi, 1)\left(\frac{1}{2} t u S_{0} u\right)^{-(1 / 2) s}
$$

which is treated by Maass [2].
§3. Rankin-Selberg method. Throughout this section, we suppose that $\left.S_{0}=\left(\begin{array}{cc}S_{0}^{\prime} & 0 \\ 0 & S_{0}^{\prime \prime}\end{array}\right)\right\} \begin{aligned} & m-m\end{aligned}(0<m<q)$ and that the Z-lattice L_{0} has an orthogonal splitting $L_{0}=L_{0}^{\prime} \oplus L_{0}^{\prime \prime}\left(L_{0}^{\prime} \subset \boldsymbol{Q}^{m}, L_{0}^{\prime \prime} \subset \boldsymbol{Q}^{q-m}\right)$. Put $S^{\prime}=\binom{S_{0}^{\prime}}{1}$ and define the algebraic groups $G^{\prime}, P^{\prime}, N^{\prime}, A^{\prime}$, and M^{\prime} with respect to S^{\prime} as in $\S 1$. The algebraic group G^{\prime} is identified with an algebraic subgroup of G via the mapping

The compact subgroup K^{\prime} of G_{A}^{\prime} is defined as in $\S 1$ by the Z-lattice L_{0}^{\prime}. Take and fix a C-valued continuos function ϕ on $M_{Q}^{\prime} A_{A}^{\prime} N_{A}^{\prime} \backslash G_{A}^{\prime} / K^{\prime}$.

We put $\theta(g, s)=|a|_{A}^{s}$ for $s \in C$ and $g=\left(\begin{array}{lll}a & b & c \\ 0 & e & f \\ 0 & 0 & j\end{array}\right) k \in G_{A}^{\prime}=P_{A}^{\prime} K^{\prime}$ with $k \in K^{\prime}$. Then the Eisenstein series associated with ϕ and the pair (G^{\prime}, P^{\prime}) is defined by

$$
E(\phi ; s, g)=\sum_{r \in P_{\boldsymbol{Q}}^{\prime} \backslash \mid G_{\boldsymbol{Q}}^{\prime}} \phi(\gamma g) \theta(\gamma g, s+m / 2)
$$

which converges absolutely for $\operatorname{Re}(s)>m / 2$ and all $g \in G_{A}^{\prime}$. It has a meromorphic continuation to the whole s-plane with a functional equation (see Arthur [1]).

For a wave form $\Phi \in A(\omega, \rho)$, we put for each $0 \neq u \in \boldsymbol{Q}^{q-m}$

$$
C_{u, \phi}(\Phi)=\sum_{h} C_{\binom{0}{u}}(\Phi, h) \phi(h)
$$

where \sum_{h} is the summation over the representatives of $M_{Q}^{\prime} A_{A}^{\prime} N_{A}^{\prime} \backslash G_{A}^{\prime} / K^{\prime}$ which is a finite set. Then we have

Theorem 2. For any cuspidal wave form $\Phi \in S(\omega, \rho)$ we have the following Rankin-Selberg type identity

$$
\begin{aligned}
\int_{G_{\boldsymbol{Q}}^{\prime} \backslash G_{A}^{\prime}} & \Phi(g) E(\phi ; s-m / 2, g) d g \\
& =2^{(1 / 2) q-1} \cdot \Gamma_{q, \rho}(s) \times \sum_{0 \neq u \in \boldsymbol{Q}^{q-m}} C_{u, \phi}(\Phi)\left(\frac{1}{2} t u S_{0}^{\prime \prime} u\right)^{-(1 / 2) s} \quad(\operatorname{Re}(s) \gg 0) .
\end{aligned}
$$

When $\left.\phi\right|_{M_{f}^{\prime}}$ is the characteristic function of $M_{Q}^{\prime}\left(M_{f}^{\prime} \cap K^{\prime}\right)$ in M_{f}^{\prime}, Theorem 2 gives

Corollary 1. For any cuspidal wave form $\Phi \in S(\omega, \rho)$, the Dirichlet series

$$
\sum_{0 \neq u \in \mathbb{Q}^{q}-m} C_{\binom{0}{u}}(\Phi, 1)\left(\frac{1}{2} t u S_{0}^{\prime \prime} u\right)^{-(1 / 2) s} \quad(\operatorname{Re}(s) \gg 0)
$$

is meromorphic on C.

If $m=1$, the Eisenstein series $E(1 ; s, g)$ has a simple functional equation, and we have

Corollary 2. Suppose $m=1$. Then for each cuspidal wave form $\Phi \in S(\omega, \rho)$,

$$
\tilde{Z}(s, \Phi)=Z(2 s) \cdot \Gamma_{q, \rho}(s) \times \sum_{0 \neq u \in \boldsymbol{Q}^{q-1}} C_{\binom{0}{u}}(\Phi, 1)\left(\frac{1}{2} t u S_{0}^{\prime \prime} u\right)^{-(1 / 2) s} \quad(\operatorname{Re}(s) \gg 0)
$$

is meromorphic on \boldsymbol{C} with a functional equation

$$
\tilde{Z}(1-s, \Phi)=\operatorname{vol}\left(\boldsymbol{R} / L_{0}^{\prime}\right) \sqrt{S_{0}^{\prime} / 2} \tilde{Z}(s, \Phi)
$$

where $Z(s)=\pi^{-(1 / 2) s} \Gamma(s / 2) \zeta(s)$.
Remark 2. If $m=q-1$ and a wave form $\Phi \in S(\omega, \rho)$ is Hecke eigen, then the Dirichlet series

$$
\sum_{0 \neq u \in \boldsymbol{Q}} C_{u, \phi}(\Phi)\left(\frac{1}{2}^{t} u S_{0}^{\prime \prime} u\right)^{-(1 / 2) s}
$$

corresponds to the standard L-function associated with Φ in the sense of Langlands (see Sugano [4, § 3]).

Remark 3. The wave forms on $O(1,2)$ (resp. $O(1,3)$) correspond to automorphic forms on GL (2) over \boldsymbol{Q} (resp. an imaginary quadratic field F) via the isogeny mapping $\operatorname{SO}(1,2)_{R} \sim \operatorname{SL}(2, R)$ (resp. $\operatorname{SO}(1,3)_{R} \sim \operatorname{SL}(2, C)$). Then the Dirichlet series defined in $\S 1$ corresponds to the standard L function $\sum_{0<n \in \mathbb{Z}} C(f, n) n^{-s}$ (resp. $\left.\sum_{\mathfrak{a} \subset \mathrm{O}_{F}} C(f, \mathfrak{a}) N(\mathfrak{a})^{-s}\right)$ associated with the automorphic form f on GL (2) over \boldsymbol{Q} (resp. F). In the case of $\mathbf{O}(1,3)$, the Dirichlet series defined in § 2 corresponds to the Dirichlet series

$$
\sum_{0<n \in \mathbb{Z}} C\left(f, n \mathbf{O}_{F}\right) n^{-s}
$$

References

[1] J. Arthur: Eisenstein series and the trace formula. Proc. Sympos. Pure Math., vol. 33, Part I, Amer. Math. Soc. Providence R. I., 253-274 (1979).
[2] H. Maass: Automorphe Funktionen von mehreren Veränderlichen und Dirichletsche Reihen. Abh. Math. Sem. Univ. Hamburg, 16, 72-100 (1949).
[3] W. Magnus et al.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer-Verlag (1966).
[4] T. Sugano: On Dirichlet series attached to holomorphic cusp forms on $\operatorname{SO}(2, q)$ (to appear).
[5] K. Takase: On the wave forms on $O(1, q+1)$ and the associated Dirichlet series (preprint, 1985).

