32. Relative Zariski Decomposition on Higher Dimensional Algebraic Varieties

By Atsushi Moriwaki

Department of Mathematics, Faculty of Science, Kyoto University (Communicated by Kunihiko Kodaira, M. J. A., March 12, 1986)

- 0. Introduction. The purpose of this note is to state several results in my Master Thesis [7]. The details will be published elsewhere. The main theorem of this note is Theorem 3. By this theorem, if K_x has a good Zariski decomposition, then the canonical ring of X is finitely generated. Theorem 1 and Theorem 2 are key theorems to prove Theorem 3. Theorem 5 is a characterization of a nef and good divisor by μ_x . All varieties in this note are assumed to be defined over an algebraically closed field of characteristic zero.
- 1. Notation. Let X be an algebraic scheme. We denote the group of Cartier divisors on X by $\operatorname{Div}(X)$. For a non-zero rational function ϕ on X, the principal Cartier divisor defined by ϕ is denoted by $\operatorname{div}(\phi)$. For $D_1, D_2 \in \operatorname{Div}(X) \otimes R$, we say D_1 is R-linear equivalent to D_2 , which is denoted by $D_1 \sim_R D_2$, if there exists a positive integer m and exists a non-zero rational function ϕ on X such that $D_1 = D_2 + (1/m)\operatorname{div}(\phi)$. For a real number a, the lounding-up, the lounding-down, the nearest integer and the fractional part of a are denoted by $\lceil a \rceil$, $\lceil a \rceil$, $\langle a \rangle$ and $\lceil a \rceil$ respectively, where in case $\lceil a \rceil = 1/2$, we define $\lceil a \rangle = \lceil a \rceil$ if $\lceil a \rceil = \lceil$

ord_x(\mathcal{S})=max{ $a \in \mathbb{N} \cup \{\infty\} \mid \mathcal{SO}_{X,x} \subseteq m_x^a\}$ and ord_x(D)= $\sum_i a_i \operatorname{ord}_x(\mathcal{O}_X(-D_i))$, where m_x is the maximal ideal of $\mathcal{O}_{X,x}$. We furthermore assume X is complete. We set $\kappa(X,D) = \max_m \{\kappa(X,[mD])\}$. If $\kappa(X,D) = \dim X$, D is called big. D is called good if there exists a birational morphism $\pi: Y \to X$ of non-singular complete varieties and exists a fiber space $h: Y \to Z$ of non-singular complete varieties such that $\pi^*(D) \sim_R h^*(M)$ for some big element M of $\operatorname{Div}(Z) \otimes R$. Next, we consider the relative case. Let X be a non-singular algebraic variety, S an algebraic variety, $f: X \to S$ a proper surjective morphism. For $D \in \operatorname{Div}(X) \otimes R$, we set

 $E(X/S, D) = \{n \in \mathbb{N} \setminus \{0\} \mid f_*\mathcal{O}_X([nD]) \neq 0\}.$

D is called f-nef if $(D \cdot C) \ge 0$ for any complete curve C on X such that f(C) is a point. D is called f-big (resp. f-good) if $D|_{X_{\eta}}$ is a big (resp. good) element of $\mathrm{Div}(X_{\eta}) \otimes R$, where X_{η} is the generic fiber of f. For a Cartier

divisor H on X, the f-base locus of H Bs (X/S, H) is defined by

Bs
$$(X/S, H)$$
 = Supp (Coker $(f^*f_*\mathcal{O}_X(H) \longrightarrow \mathcal{O}_X(H))$).

If $\operatorname{Bs}(X/S,H)=\phi$, H is called f-free. An element L of $\operatorname{Div}(X)\otimes Q$ is called f-semi-ample if there exists a positive integer m such that $mL\in\operatorname{Div}(X)$ and mL is f-free. For $D\in\operatorname{Div}(X)\otimes R$, a decomposition D=P+N is called an f-sectional decomposition if P, $N\in\operatorname{Div}(X)\otimes R$, N is effective and there exists a positive integer d such that the natural homomorphism $f_*\mathcal{O}_X([ndP])\to f_*\mathcal{O}_X([ndD])$ is bijective for every $n\geq 0$. P (resp. N) is called the positive part (resp. negative part) of this decomposition. An f-sectional decomposition D=P+N is called an f-Zariski decomposition (resp. good f-Zariski decomposition) if the positive part P is f-net (resp. f-nef and f-good). Let D be an element of $\operatorname{Div}(X)\otimes R$ and X a point of X (not necessarily closed). We set

$$\mathcal{G}_n(X/S, D) = \operatorname{Im} (f^*f_*\mathcal{O}_X([nD]) \otimes \mathcal{O}_X(-[nD]) \longrightarrow \mathcal{O}_X)$$

and

$$\mu_x(X/S, D) = \inf_n ((\operatorname{ord}_x (\mathcal{J}_n(X/S, D)) + \operatorname{ord}_x (\{nD\}))/n).$$

By the definition of $\mu_x(X/S, D)$, $\mu_x(X/S, D)$ is upper semi-continuous with respect to $x \in X$.

2. Non-vanishing theorem and vanishing theorem. We refer the reader to [3] for the notion concerning generalized normal crossing varieties.

Theorem 1 (Non-vanishing theorem). Let X be a generalized normal crossing variety, Z a projective variety and let $f: X \rightarrow Z$ be a morphism. Let D_j be an element of Div(Z) and d_j a real number for every $j \in J$, where J is a finite subset of N. We assume the following.

- (i) For all $n \ge 0$, every connected component of X_n is mapped surjectively to Z.
 - (ii) $D = \sum_{i \in J} d_i D_i$ is nef.
- (iii) There exists an element A of $\mathrm{Div}_0(X) \otimes \mathbf{R}$ such that the support of A is a generalized normal crossing divisor on X and $\lceil A \rceil \geq 0$.
- (iv) There exists a positive number t_0 and exists an ample element L of $\text{Div}(Z) \otimes R$ such that $t_0 f^*(D) + A K_X \sim_R f^*(L)$.

Then there are positive numbers t_1 and ε_1 such that for any $t \ge t_1$ satisfying $|\langle td_j \rangle - td_j| < \varepsilon_1$ for all $j \in J$, we have

$$H^{0}(X, \mathcal{O}_{X}(f^{*}(\sum_{j\in J}\langle td_{j}\rangle D_{j})+\lceil A\rceil))\neq 0.$$

Theorem 2 (Vanishing theorem). Let X be a non-singular algebraic variety, S an algebraic variety and let $f\colon X{\to} S$ be a proper surjective morphism. Let L be an element of $\mathrm{Div}(X){\otimes} R$ such that L is f-nef and f-good and $\{L\}_{\mathrm{red}}$ has only normal crossings. Let E, E' be elements of $\mathrm{Div}(X)$ such that E and E' are effective and $E+E'\in |[mL]|$ for some positive integer m. Then homomorphisms induced by the natural homomorphism $\mathcal{O}_X{\to}\mathcal{O}_X(E)$

$$\phi_E^i: R^i f_* \mathcal{O}_X (K_X + \lceil L \rceil) \longrightarrow R^i f_* \mathcal{O}_X (K_X + \lceil L \rceil + E)$$

are injective for all $i \ge 0$.

Theorem 1 is a generalization of [3, Theorem 5.1] and [4, Theorem 3]. Theorem 2 is a relative version of [5].

3. Rationality and semi-ampleness.

Theorem 3. Let X be a non-singular algebraic variety, S an algebraic variety and let $f: X \rightarrow S$ be a proper surjective morphism. Let Δ be an element of $\mathrm{Div}(X) \otimes \mathbf{Q}$ such that $[\Delta] = 0$ and Δ_{red} has only normal crossings. We assume that $K_x + \Delta$ has a good f-Zariski decomposition $K_x + \Delta = P + N$, where P is the positive part of this decomposition. Then $P \in \mathrm{Div}(X) \otimes \mathbf{Q}$ and P is f-semi-ample.

Theorem 3 is a generalization of [4, Theorem 1]. Using Theorem 3, we have that $R(X, K_x + \Delta) = \bigoplus_{n=0}^{\infty} H^0(X, \mathcal{O}_X([n(K_x + \Delta)]))$ is finitely generated if X is complete and $\kappa(X, K_x + \Delta) \leq 2$. (cf. [6, Theorem (3, 1)].) We remark that Cutkosky [1] gave an example of a big divisor which has no Zariski decomposition with rational coefficients.

4. f-sectional decomposition. Let X be a non-singular variety, S an algebraic variety and $f: X \rightarrow S$ be a proper surjective morphism. Let D be an element of $Div(X) \otimes R$ such that $E(X/S, D) \neq \phi$. Then it is easy to see that there are a finite number of prime divisors Γ such that $\mu_{\Gamma}(X/S, D) > 0$. Hence we can set

$$N(X/S,D) = \sum_{\Gamma: \text{ prime divisors}} \mu_{\Gamma}(X/S,D)\Gamma$$
 and $P(X/S,D) = D - N(X/S,D)$.

Proposition 4. Notation being the same as above, we have

- (i) D=P(X/S, D)+N(X/S, D) is an f-sectional decomposition,
- (ii) for any f-sectional decomposition D=P+N,

$$\mu_x(X/S, D) = \mu_x(X/S, P) + \operatorname{ord}_x(N)$$

for all $x \in X$, and

(iii) for any f-sectional decomposition D=P+N, $N \leq N(X/S, D)$.

We call the f-sectional decomposition D=P(X/S, D)+N(X/S, D) the canonical f-sectional decomposition.

Theorem 5. Let X, S and f be the same as in Proposition 4. For $L \in \text{Div}(X) \otimes R$, the following are equivalent.

- (i) $\mu_x(X/S, L) = 0$ for all $x \in X$.
- (ii) L is f-nef and f-good.

Theorem 5 means that L is almost base point free in the sense of Goodman [2] if and only if L is nef and good.

Corollary 6 (Uniqueness of the good Zariski decomposition). Let X, S and f be the same as in Proposition 4. Let D be an element of $Div(X) \otimes \mathbf{R}$ and D=P+N a good f-Zariski decomposition. Then P=P(X/S,D) and N=N(X/S,D).

References

- [1] Cutkosky, S. D.: Zariski decomposition of divisors on algebraic varieties (preprint, Brandeis Univ., 1985).
- [2] Goodman, J. E.: Affine open subsets of algebraic varieties and ample divisors. Ann. of Math., 89, 160-183 (1969).

- [3] Kawamata, Y.: Pluricanonical systems on minimal algebraic varieties. Invent. Math., 79, 567-588 (1985).
- [4] —: The Zariski decomposition of log-canonical divisors (preprint, Tokyo Univ., 1985).
- [5] Kollár, J.: Higher direct images of dualizing sheaves (preprint, Harvard Univ., 1984).
- [6] Moriwaki, A.: Semi-ampleness of the numerically effective part of Zariski decomposition (to appear in J. Math. Kyoto Univ.).
- [7] —: Zariski decomposition on higher dimensional algebraic varieties. Master Thesis, Kyoto Univ. (1986) (in Japanese).