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0. Introduction. The purpose of this note is to state several results
in my Master Thesis [7]. The details will be published elsewhere. The
main theorem of this note is Theorem 3. By this theorem, if K, has a good
Zariski decomposition, then the canonical ring of X is finitely generated.
Theorem 1 and Theorem 2 are key theorems to prove Theorem 3. Theorem
5 is a characterization of a nef and good divisor by p,. All varieties in
this note are assumed to be defined over an algebraically clesed field of
characteristic zero.

1. Notation. Let X be an algebraic scheme. We denote the group
of Cartier divisors on X by Div(X). For a non-zero rational function ¢
on X, the principal Cartier divisor defined by ¢ is denoted by div (¢). For
D,, D, e Div (X)QR, we say D, is R-linear equivalent to D,, which is denoted
by D,~gD,, if there exists a positive integer m and exists a non-zero
rational function ¢ on X such that D,=D,+ (1/m)div(¢). For a real
number a, the lounding-up, the lounding-down, the nearest integer and
the fractional part of ¢ are denoted by Mo, [a], (a) and {a} respectively,
where in case {¢}=1/2, we define {a>="a1if a>0, (a)=[a] if a<<0. From
now on, we assume X is non-singular. Let D be an element of Div(X)®R
and D=3 ,a,D, the irreducible decomposition of D. Then we set D7
=>Ta,'D,, [D1=>;[a]D;, {(D)=>;{a;»D, and {D}=>",{a;}D,. Let Y be
an ideal sheaf of @y and « a point of X (not necessarily closed). Then we
define

ord, (J)=max{a € NU{co}| JOx,.Smi} and ord, (D)=733; a; 0rd, (Ox(—D,)),

where n, is the maximal ideal of @ ,. We furthermore assume X is com-
plete. We set #(X, D)=max,, {«(X, [mD])}. If x(X, D)=dim X, D is called
big. D is called good if there exists a birational morphism z: Y—X of
non-gingular complete varieties and exists a fiber space h: Y—Z of non-
singular complete varieties such that z*(D)~ p h*(M) for some big element
M of Div(Z)®R. Next, we congider the relative case. Let X be a non-
singular algebraic variety, S an algebraic variety, f: X—S a proper sur-
jective morphism. For D € Div(X)®R, we set

E(X /S, D)={n € N\{0}| £ Ox(InD])#0}.

D is called f-nef if (D-C)=0 for any complete curve C on X such that f(C)
is a point. D is called j-big (resp. j-good) if D|,, is a big (resp. good)
element of Div (X,)®R, where X, is the generic fiber of f. For a Cartier
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divisor H on X, the f-base locus of H Bs (X /S, H) is defined by

Bs (X /S, H)=Supp (Coker (f* [0 x(H)—>Ox(H))).
If Bs(X/S, H)=¢, H is called f-free. An element L of Div(X)®Q@ is called
f-semi-omple if there exists a positive integer m such that mL e Div (X)
and mL is f-free. For D e Div(X)®R, a decomposition D=P+ N is called
an f-sectional decomposition if P, N € Div(X)®R, N is effective and there
exists a positive integer d such that the natural homomorphism £, 0 y([ndP])
—[+Ox([ndD]) is bijective for every n=0. P (resp. N) is called the posi-
tive part (resp. negative part) of this decomposition. An f-sectional
decomposition D=P~+N is called an f-Zariski decomposition (resp. good
S-Zariski decomposition) if the positive part P is f-net (resp. f-nef and f-
good). Let D be an element of Div(X)®R and « a point of X (not neces-
sarily closed). We set

(X8, D)y=1Im (f*f,O0x((nDNXO x(—[nD))—>0Ox)
and

#(X /S, Dy=int, ((ord, (J,(X/S, D))+ ord, ({nD})/n).
By the definition of p(X/S, D), p,(X/S, D) is upper semi-continuous with
respect to x € X,

2. Non-vanishing theorem and vanishing theorem. We refer the
reader to [3] for the notion concerning generalized normal crossing varie-
ties.

Theorem 1 (Non-vanishing theorem). Let X be a generalized normal
crossing variety, Z a projective variety and let f: X—Z be a morphism.
Let D, be an element of Div (Z) and d; a real number for every jcJ, where
J is a finite subset of N. We assume the following.

(i) For all n=0, every connected component of X, is mapped sur-
Jectively to Z.

(ii) D=3.,d,D, is nef.

(iii) There exists an element A of Div,(X)QR such that the support
of A is a generalized normal crossing divisor on X and "TA1=0.

(iv) There exists a positive number t, and exists an ample element L
of Div(Z)®R such that t,f*(D)+A—K 3~ » f*(L).

Then there are positive numbers t, and e, such that for any t=t, satis-
fying |(td;y—td;|<e, for all jeJ, we have

H'(X, Ox(F*(Syes (td;)D) +T A1) 0.

Theorem 2 (Vanishing theorem). Let X be a non-singular algebraic
variety, S an algebraic variety and let f: X—S be a proper surjective
morphism. Let L be an element of Div(X)Q®R such that L is f-nef and
J-good and {L},.c has only normal crossings. Let E, E’ be elements of
Div (X) such that E and E’ are effective and E+E’ e|[mL]| for some posi-
tive integer m. Then homomorphisms induced by the natural homomor-
phism O x—0Ox(E)

$5: R Ox(Kx+TL)——>R' [,Ox(Kx+TL+E)
are injective for all i=0.
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Theorem 1 is a generalization of [3, Theorem 5.1] and [4, Theorem 3].
Theorem 2 is a relative version of [5].

3. Rationality and semi-ampleness.

Theorem 3. Let X be a non-singular algebraic variety, S an algebraic
variety and let f: X—S be a proper surjective morphism. Let 4 be an
element of Div (X)®Q such that [4]=0 and 4., has only normal crossings.
We assume that Ky-+4 has a good f-Zariski decomposition Ky+4=P~+N,
where P is the positive part of this decomposition. Then P e Div(X)RQ
and P is f-semi-ample.

Theorem 3 is a generalization of [4, Theorem 1]. Using Theorem 3,
we have that R(X, Ky+4) =P H'(X, Ox(n(K 3+ D)) is finitely generated
if X is complete and £(X, Ky+4)<2. (cf. [6, Theorem (3, 1)].) We remark
that Cutkosky [1] gave an example of a big divisor which has no Zariski
decomposition with rational coefficients.

4. f.sectional decomposition. Let X be a non-singular variety, S an
algebraic variety and f: X—S be a proper surjective morphism. Let D
be an element of Div (X)®R such that E(X/S, D)#¢. Then it is easy to
see that there are a finite number of prime divisors I” such that y(X/S, D)
>0. Hence we can set

NX/S, D)= 3 u«X/S, D) and P(X/S, Dy=D—N(X/S, D).

I: prime divisors

Proposition 4. Notation being the same as above, we have

(i) D=PX/S,D)+N(X/8S, D) is an f-sectional decomposition,

(ii) for any f-sectional decomposition D=P+N,

11X /8, D)=p,(X|S, P)+ord, (N)

forall x e X, and

(iii) for any f-sectional decomposition D=P+N, NXN(X/S, D).

We call the f-sectional decomposition D=P(X/S, D)+ N(X/S, D) the
canonical f-sectional decomposition.

Theorem 5. Let X, S and f be the same as in Proposition 4. For
L e Div(X)®R, the following are equivalent.

(i) p(X/S,L)=0 for all x € X.

(ii) L is f-nef and f-good.

Theorem 5 means that L is almost base point free in the sense of
Goodman [2] if and only if L is nef and good.

Corollary 6 (Uniqueness of the good Zariski decomposition). Let X,
S and f be the same as in Proposition 4. Let D be an element of Div (X)
®R and D=P+N a good f-Zariski decomposition. Then P=P(X/S, D)
and N=N(X/S, D).
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