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2. Instability of Periodic Solutions of Some Ewolution Equations
Governed by Time-Dependent Subdifferential Operators

By Nobuyuki KENMoOCHI*' and Mitsuharu OTANT*®)
(Communicated by Ko6saku YO0SIDA, M. J. A., Jan. 12, 1985)

Let H be a Hilbert space with norm |.|, and @(H) be the set of all
proper lower semicontinuous convex functions from H into (—oo, co].
Given a T-periodic mapping t—¢’ from R into @(H), and a T-periodic func-
tion f in L} (R; H) (i.e. ¢'"*"=¢' for t e R, and f(t+T)=f(t) for a.e. t € R),
we consider the equation
(E) wW(@)+04 (u(®) 3 f (), ted,
where J is an interval in R, «/(¢)=(d/dt)u(f) and 9¢° is the subdifferential
of ¢’. For related studies on (E) we refer to [2,4,7, 8,11,12, 13].

In [3], Baillon and Haraux treated the time-independent case of ¢‘,
i.e. ¢*=¢, and proved that any solution on J=[t, =) is asymptotically T-
periodic in the weak topology of H and the difference of any two T-periodic
solutions is a constant vector on R. Subsequently, Haraux [5] and Ishii
[6] discussed the equation from the same viewpoint as in [3], when ¢‘'=¢
and f is almost periodic on R. In this paper we shall show by a simple
example in 3-dimensional space that the equation with the time-dependent
¢' is essentially different in nature from that with the time-independent
o =e.

1. A flow in 3.-dimensional space. We take 3-dimensional space R®
as H, and denote by x=(x,, ,, ;) a generic point in R®. Now, for each
te R and 6 €0, o), let us consider the operator R,({) from the x,x.-plane
X,={(xy, 5, 0); x,, x, € R} into R* which is defined as follows:

(1) Ry()x=(x,(8), z.(8), 2,(1)), e X,,

where x,(t)=7(cos 6 cos ( —a)-+sin d sin (§—a) cos t), x,(t)=r(8in f cos (§—a)
—co08 0 8in (f—a) cos t), x,(t)=rsin t sin (§—a) and x=r(cos «, sina, 0), r=|x|,
0<wa<2zx. The operation z— R,(t)x geometrically means the rotation of «
around the line l,: —x, tan +x,=x,=0 in t-degree. From the definition
of R,(t) we immediately see that

(2) R,(t)is linear and isometric for any ¢t € R and 6 € [0, z), and

(3) R,(t)is a C~-function of ¢t for any x € X, and 4 [0, x).

For the moment we fix a number § with 0<d<z. For each te R we
define the operator S(¢) from X, into R® by
(4) S#)=S,(t—2nx)[S,(2x)]" for t € [2nrz, 2(n+1)x), n e Z,
where
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S() ={R0(t) for 0<t<n,
R,(t—n)Ry(x) for z<t<2rx,
and
[Sy(2m)]°=the identity on X, [S,(2x)]* ={[S,(2x)]-"}~" for n<0.

Also, we denote by X(t) the image of X, under S(t), i.e. X(&)=S#)X,.

Clearly, if t € [2nx, 2n+1)x] (resp. t € [@n+1)x, 2(n+1)x]), then X (%) is the

plane in R® which is given by rotating X, around the line [;: 2,=x,=0

(resp. l,) in (t—2nr)-degree (resp. (t —x—2nr)-degree). Moreover,

(5) X(nr)=X,, X(t+2nz)=X(t) for all ne Zand t e R.
Proposition 1. Let 0<8<=, and S(t) be as above. Then we have:
(S81) For each te R, S(t) is a linear isometric operator from X, onto

X(t).

(82) S(0) is the identity on X,.

(S3) S@nr)x=r(cos (a+2n0), sin (@+2nb), 0) for any x=7r(cos «, sin «,
0), r=|x|, 0Za<2r.

(S4) S@)x=S{t—2nr)S@nrn)x for any te R, ne Z and x € X,.

(S5) (i) For each x € X,, S(-)x ts a Lipschitz continuous function on
R with |x| as a Lipschitz constant and belongs to C~(R\4; R*®), where
d={nz;ne Z}. (i) The right (rvesp. left) derivative (d*/dt)S(t)x (resp.
(d-/dt)S(t)x) exists for every t e R and x € X,, and (d*/dt)S(t)x € X(t)L=the
orthogonal complement of X(t) in R® for every te R and x e X,. (iii) For
x € X,, (d*/dt)St)x=0 for some t € R if and only if ©=0.

(86) (i) If xe X, £+0 and S(-)x has a period T >0, then T =2nx for
some ne N. (ii) Let x € X,, x#0 and ne N. Then S(-)x is 2nz-periodic if
and only if 6=kx/n for some ke N. (iii) If x € X,, 20 and 0/x is irra-
ttonal, then S(-)x has no pertod.

(87) For each x e X,, S(-)x is almost periodic on R.

Proof. Properties (S1)-(S5) immediately follow from (1)-(5). Now
we prove (i) of (S6). Let T>0, x ¢ X, and x+0, and suppose that
(6) St+T)x=S(t)x for all t e R.

Put T=T,+2nr with 0<T,<2r and n e Nor n=0. Then it suffices to show

that T,=0and ne N. For this purpose we show that any of the following

three cases (@), (B), () never occurs: (@) 0<T\<z. (B) Ty=r. () z<T,<2r.

First assume («) holds. Then we note that (6) with t=0 and (4) yield

(1) r=8(T)x=R(T)LS,(27)]"®.

Hence 2z ¢ X,NX(T,)=1,. Since R(T,) is the identity on [, it follows from

(7) that £=I[S,@2r)]"x. From this and the equality (6) with t=—T, we see

that

2=[S,2m)]"x=S(—T,+T)x=8S(—Tyx=R,(—T,)x.

Therefore x ¢ X,N X(—T,)=1,. Since [,N1,={0}, we have x=0. Thisisa

contradiction. Similarly, under () or () we get a contradiction. Thus

(i) of (S6) holds. Property (ii) of (S6) is easily derived from (S3) and (6),

and subsequently (iii) of (S6) holds. Finally, we show (S7) by using the

following Bochner’s criterion for the almost periodicity (cf. Amerio-Prouse
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[1I): A function f e C(R; R®) is almost periodic on R if and only if for any
sequence {s,} in R, there exists a subsequence {s,} of {s,} such that f(¢+s,,)
converges in R® uniformly in ¢ € R. Now, let {s,} be any sequence in R and
x=r(cos a, Sina, 0). Then, putting
sy=2n,n+7,, n,€Z, t,€l0,2r), 2n,0=2m,x+0,, m,c Z, 0, ¢cl0,2r),
we obtain from (S3) and (S4) that
St+s)r=S{t+s,—2n,x)S@Cn,r)x=S{E+1,)%s,
where «, = r(cos (¢+2n.0), sin (a+2n,0), 0) = r(cos (e+6,), sin («¢+46,), 0).
Here, extract a subsequence {k;} of {k} so that r,,—r,€[0,2z] and 8,,—0,
€[0,2z]. Then wx;,—x,=7(cos (a+8), sin (¢+6,),0) € X, in R°. Therefore,
by (S1) and (i) of (S5),
IS(t'l‘skj)x"S(t+To)x0|_£_|s(t+fk,)wk,_s(t+Tk,)xol+ls(t+fkj)xo_s(t+To)xol
S|®s,— Tl [ 2ol |76, — 7o -
This shows that S(¢+s,,)x converges to S(t+17,), in R® uniformly in ¢ € R.

2. An example. With the same notations as in the previous section,

for each t € R we put
()= {O %f xe X(t),

o0 if x € R\ X(?).
Clearly ¢* € @(R*) with D(@¢*)=X(¢), and 9¢‘(x)=X(¢)* for any x € X(¢). By
(5), the mapping t—¢’ is 2z-periodic on R. Moreover, (S5) implies that for
every z e X,, u(t)=S(t)x gives a solution to the equation
(8) w'(t)+0g'(u(t)) 2 0, teR.
Denoting by &, the set of all T-periodic solutions of (8), we obtain imme-
diately the following propositions from the facts in the previous section.

Proposition 2. Suppose that 6=kr/ne (0,x) for somek,ne N. Then
every solution u of (8) belongs to P,,., and for any u, v € P,,, with u+=v the
difference u—v is not constant on R. Moreover we have P,,={0}.

Proposition 3. Suppose that /= is an irrational number in (0,1).
Then Pr={0} for every T>0, and hence, if u is a solution of (8) and u=0
on R, then u is not T-periodic on R for any T>0. Moreover, every solu-
tion y of (8) is an almost periodic function on R such that |u(t)|=|u(0)| for
all te R.

Remarke. In general, for a solution u to (E), —u/(t) does not coincide
with the minimal section (9¢‘(u(t))— f(£))° of 9¢‘(u(t))— f(¢t). This is one
of the reasons why the behavior of solutions is quite different from that
of the equation with the time-independent ¢’=4.

The detail discussion on the behavior of solutiors to (E) will be made
in the authors’ forthcoming papers [9, 10].
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