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90. The Number of Embeddings of Integral
Quadratic Forms. I*

By Rick MIRANDA**) and David R. MORRISON***)

(Communicated by Kunihiko KODAIRA, M. J. A., Dec. 12, 1985)

1. Introduction. An integral quadratic form is a free Z-module L
of finite rank together with a map ¢: L—Z such that the induced map
b: L x L—Z defined by b(x, ¥)=q(x+y)—q(x)—q(y) is Z-bilinear, and such
that q(nx)=n’q(x) for all ne Z and x e L. (This is sometimes called an
“even” form in the literature, since the function x—b(x, ) =2¢(x) assumes
only even values.) The adjoint map of the associated bilinear form b is a
Z-linear map Ad b : L—L*=Hom (L, Z); L is called nondegenerate if Ad b
is injective, and unimodular if Ad b is an isomorphism.

If M and L are integral quadratic forms, an embedding of M into L
is an injective homomorphism of Z-modules ¢ : M—L which preserves the
quadratic maps; ¢ is called primitive if coker ¢ is free. Nikulin [3] has
given necessary and sufficient conditions for the existence of a primitive
embedding of M into L in the case that M is nondegenerate and L is indefi-
nite and unimodular.

A Z-module isomorphism ¢ : M—L which preserves the quadratic maps
is called an isometry. The group of all isometries from L to itself is
denoted by O(L). We say that two primitive embeddings ¢,, ¢,: M—L are
equivalent if there is an isometry ¢ in O(L) such that go¢,=¢,. (There
are also some restricted notions of equivalence in which ¢ is required to
lie in a specified subgroup of O(L).) Our goal is to count the number of
equivalence classes of primitive embeddings from a nondegenerate M into
an indefinite unimodular L, assuming that one such embedding exists. In
this note, we modify some arguments of Nikulin [8] and Wall [4] to express
this number in terms of a certain invariant of the orthogonal complement
N of M in L; a subsequent note will give a procedure for computing that
invariant when N is indefinite and has rank at least three. The proofs,
together with some applications to algebraic geometry, will be given
elsewhere.

2. Real quadratic forms and subgroups of the orthogonal group.
Let L be a nondegenerate integral quadratic form. If we extend g to a
map q : LOR—R by the requirement q(rz)=72q(x) for r ¢ R and z € L, then
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L®R becomes a nondegenerate real quadratic form. Such a form has a
signature (r,, r_), where 7, is the number of positive eigenvalues and »_ is
the number of negative eigenvalues; we also call this the signature of L.
Of course, r=r,+r_ is the rank of L since L is nondegenerate. L is
indefinite if r,r_=0.

Let {4+, —} be a group with two elements, with identity +. We define
two natural homomorphisms det, spin : O(LQR)—{+, —} as follows : det (¢)
is the sign of the determinant of ¢, and spin (¢) is the sign of the real
spinor norm of ¢. More precisely, since the Cartan-Dieudonné theorem
guarantees that O(L®R) is generated by reflections in non-isotropic ele-
ments, if ¢ is the reflection in x ¢ LR, then det (¢)= —, while spin (¢)= +
(or —) if g(x)>0 (or q(x)<<0).

These homomorphisms lead to four natural subgroups of O(LXR).
Define O, ,(LQR) to be the kernel of (det, spin). For «, fe{+, —} with
(a, p)#(+, +) we then define a group O,,(LOR) containing O, ,(LYR) by
specifying that O,(LQ®R)/O.,.(LR®R) be generated by any element o¢
O(L®R) such that det (¢)=«a and spin (¢)=. (If no such element exists,
which can only happen if L is definite, we set O (L&R)=0, ,(LQR).)
Note that the index [0,,(L®R) : O,  (LRR)] is either 1 or 2. Finally, for
any o, fe{+, —}, we define O0,,(L)=0(L) N O ,(LXR).

Let L be a nondegenerate integral quadratic form with signature
(r,,r.). Following Looijenga and Wahl [1], we define a positive (or
negative) stgn structure on L to be a choice of one of the connected com-
ponents of {oriented subspaces IIC LQR of dimension r, (or _) such that
q|z is positive (or negative) definite}. (Note that this set has at most two
connected components, and that it has exactly two unless L is negative
(or positive) definite.) A total sign structure on L is a choice of both a
positive and a negative sign structure; such a choice determines an orien-
tation on L as well, by the rule that if /7, (or I7_) belongs to the positive
(or negative) sign structure, then 77, AII_ defines the orientation.

Lemma (cf. [1]). Let L be a nondegenerate integral quadratic form
with total sign structure. Then
(1) O0..L)={o€O0()|c preserves the total sign structure}.

(ii) O,_(L)={oc € O(L)|o preserves the orientation}.

(iii) O_,(L)={o € O(L)|o preserves the negative sign structure}.

(iv) O__(L)={oc € O(L)|o preserves the positive sign structure}.

(v) If L is indefinite and unimodular, the groups O(L), O, .(L), O, _(L),
O_.(L), and O__(L) are pairwise distinct.

Due to this Lemma, we refer to a total sign structure, orientation,
negative sign structure and positive gign structure as a (4, +)-structure,
(4, —)-structure, (—, +)-structure and (—, —)-structure, respectively.

If L, and L, are two integral quadratic forms on which an («, 8-
structure has been fixed for some «, B {+, —}, we call ¢: L,—L, an (a, p)-
isometry if ¢ is an isometry preserving the (e, f)-structure. We also say
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that two primitive embeddings ¢,, ¢, : M—L are (e, p)-equivalent if there is
some ¢ € O,4(L) such that oo¢,=¢,; these are the restricted versions of
equivalence alluded to in section 1.

3. The discriminant-form construction. Let N be a nondegenerate
integral quadratic form. The discriminant-group of N is the finite abelian
group G,=Coker (Ad b). This group inherits a Q/Z-valued quadratic
form from the form ¢ on N by the following prescription: for any & e N*
there is some n € Zand « € N such that né=Ad b(x) ; one defines ¢(¢ mod N)
=n"2q(x), and checks that this is well-defined mod Z (cf. [8]). Gy, equipped
with this quadratic form, is called the discriminant-form of N.

An isometry between the discriminant-forms of N, and N, is an iso-
morphism of finite groups + : Gy,—Gy, preserving the quadratic forms;
we say that N, and N, have isometric discriminant-forms if such an iso-
metry exists. The group of self-isometries of Gy is denoted by O(G,).
There is a natural homomorphism O(N)—O(G,) induced by the adjoint
map.

Let g(N) denote the set of isometry classes of nondegenerate integral
quadratic forms which have the same signature as N and whose discrimi-
nant-forms are isometric to G ; this is a refinement of the classical notion
of the “genus” of an integral quadratic form. If an (e, f)-structure has
been fixed on N (for some «, B {4+, —}), we may use a weaker equivalence
relation, and define g.,(N) to be the set of (¢, f)-isometry classes of non-
degenerate integral quadratic forms with a fixed (a, p)-structure, which
have the same signature as N and whose discriminant-form is isometric
to Gy.

Theorem. Let ¢: M—L be a primitive embedding of nondegenerate
integral quadratic forms such that L is indefinite and unimodular, and let
N be the orthogonal complement of the image of . Then there are exactly

e(N)=_3, [0(Gy):Image (O(N)—0(Gy))]

N’€g(N)
equivalence classes of primitive embeddings of M into L, and exactly

es(N)=_ > ) [0(Gy) : Image (O,,(N)—O0(Gy))]

N'€gap(N
(a, P)-equivalence classes i)f such embeddings. (The sums run over a set
of representatives for the equivalence classes.)

Proof. Fix total sign structures on M and on L. The primitive
embedding ¢ : M—L determines a total sign structure on the orthogonal
complement N by the requirement that if I, belongs to the positive (or
negative) sign structure on M, and I7, belongs to the positive (or negative)
sign structure on N, then ¢(/7,) Al belongs to the positive (or negative)
sign structure on L.

If ¢’ : M—L is another primitive embedding with orthogonal comple-
ment N’, a similar construction produces a total sign structure on N’.
Moreover, N’ has the same signature as N, since both are equal to the
difference of the signatures of L and of M.
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The analysis of Nikulin (Proposition 1.6.1 in [3]; cf. also Wall [4]) now
shows that ¢ and ¢’ determine isomorphisms of finite groups ¥ : G,—Gy
and ¥ : Gy—G, which reverse the signs on the quadratic maps, i.e., gyo
=—qyu=qyovy’. Hence, ¢ oy ':Gy—G, is an igsometry, so that N’
determines classes in g(N) and g,,(N).

Conversely, if we are given N’ e g(N) or N’ € g,,(N), there exist iso-
morphisms ' : G,—G,. which reverse the sign on the quadratic map. A
choice of such an isomorphism +’ then determines a unimodular integral
quadratic form L’DM®N’, which inherits a total sign structure from the
construction above. Since L’ is indefinite, unimodular, and has the same
signature as L, a theorem of Milnor [2] guarantees that there is an iso-
metry ¢ : L—L’; by part (v) of the Lemma, we may choose r to preserve
the (a, p)-structure for any «, fe{+, —}. The composition of ¢ with the
inclusion of M into L’ gives a primitive embedding ¢’ : M— L, which pre-
serves the («, p)-structure if N’ € g,,(N).

It remains to decide when the embeddings ¢,: M—L determined by
two pairs (N, ¥,) (i=1, 2) are equivalent or (e, p)-equivalent. If o:L—L
represents an equivalence (or («, f)-equivalence), then ¢ induces an isometry
of N, with N, (which preserves the (@, f)-structure in the case of («, B)-
equivalence) ; hence, a necessary condition is that N, and N, belongs to the
same class in g(N) (or g,,(N)).

If we choose an isometry (or («, f)-isometry) p: N;—N,, then Nikulin’s
analysis also shows that id,®p extends to an isometry of L, with L, if and
only if o p* o yp,=1dg,, Where p*: Nt—>N} is the induced map; clearly the
extension of id,®p is an (e, p)-isometry if and only if p is. Hence the set
of equivalence classes (or (¢, p)-equivalence classes) of primitive embeddings
with orthogonal complement isometric (or (@, p)-isometric) to N’ coincides
with the set of cosets O(G, )/ Image (O(N')—O0(G,)) (or O(G.)/ Image (O,,(N’)
—0(Gy.)), and the theorem follows.
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