84. The Fourier-Borel Transformations of Analytic
 Functionals on the Complex Sphere

By Ryoko Wada
Sophia University
(Communicated by Kôsaku Yosida, m. J. A., Nov. 12, 1985)

1. Introduction. Let d be a positive integer and $d \geqslant 2 . S=S^{d}$ denotes the unit sphere in $R^{d+1} . L(z)$ and $L^{*}(z)$ denote the Lie norm and the dual Lie norm on C^{d+1} respectively:

$$
\begin{aligned}
& L(z)=L(x+i y)=\left[\|x\|^{2}+\|y\|^{2}+2\left\{\|x\|^{2}\|y\|^{2}-(x \cdot y)^{2}\right\}^{1 / 2}\right]^{1 / 2}, \\
& L^{*}(z)=\sup \{|\xi \cdot z| ; L(\xi) \leqslant 1\},
\end{aligned}
$$

where $\xi \cdot z=\sum_{j=1}^{d+1} \xi_{j} \cdot z_{j}, x, y \in \boldsymbol{R}^{d+1}$, and $\|x\|^{2}=x \cdot x$.
$\mathcal{O}\left(\boldsymbol{C}^{d+1}\right)$ denotes the space of entire functions on \boldsymbol{C}^{d+1}. We put $\operatorname{Exp}\left(C^{d+1}:(r: N)\right)=\lim _{r^{\prime}>r} \operatorname{proj} X_{r^{\prime}: N} \quad$ for $0 \leqslant r<\infty$
and

$$
\operatorname{Exp}\left(C^{d+1}:[r: N]\right)=\operatorname{limind}_{r^{\prime}<r} X_{r^{\prime}: N} \quad \text { for } 0<r \leqslant \infty
$$

where N is a norm on C^{d+1} and

$$
X_{r^{\prime}: N}=\left\{f \in \mathcal{O}\left(\boldsymbol{C}^{a+1}\right) ; \sup _{z \in \boldsymbol{C}^{d+1}}|f(z)| e^{-r^{\prime} N(z)}<\infty\right\}
$$

We denote the complex sphere by $\tilde{S}=\left\{z \in C^{d+1} ; z_{1}^{2}+z_{2}^{2}+\cdots+z_{d+1}^{2}=1\right\}$, and we put $\tilde{S}(r)=\{z \in \tilde{S} ; L(z)<r\}$ for $r>1$ and $\tilde{S}[r]=\{z \in \tilde{S} ; L(z) \leqslant r\}$ for $r \geqslant 1$. $\mathcal{O}(\tilde{S}(r))$ denotes the space of holomorphic functions on $\tilde{S}(r)$ and we put $\mathcal{O}(\tilde{S}[r])=\operatorname{limind}{r^{\prime}>r}^{\mathcal{O}}\left(\tilde{S}\left(r^{\prime}\right)\right) . \quad \operatorname{Exp}(\tilde{S})$ denotes the restriction to \tilde{S} of the space $\operatorname{Exp}\left(C^{d+1}\right)$ of entire functions of exponential type. $\mathcal{O}^{\prime}(\tilde{S}(r))$, $\mathcal{O}^{\prime}(\tilde{S}[r])$ and $\operatorname{Exp}^{\prime}(\tilde{S})$ denote the dual spaces of $\mathcal{O}(\tilde{S}(r)), \mathcal{O}(\tilde{S}[r])$, and $\operatorname{Exp}(\tilde{S})$ respectively.

The Fourier-Borel transformation P_{λ} for a functional $f^{\prime} \in \operatorname{Exp}^{\prime}(\tilde{S})$ is defined by

$$
P_{\lambda} f^{\prime}(z)=\left\langle f_{\xi}^{\prime}, \exp i \lambda(\xi \cdot z)\right\rangle \quad \text { for } z \in C^{a+1},
$$

where $\lambda \in \boldsymbol{C}, \lambda \neq 0$ is a fixed constant.
Morimoto [1] determined the images of $\operatorname{Exp}^{\prime}(\tilde{S})$ and $\mathcal{O}^{\prime}(\tilde{S})$ by P_{λ}. The purpose of this paper is to determine the images of $\mathcal{O}^{\prime}(\tilde{S}(r))$ and $\mathcal{O}^{\prime}(\tilde{S}[r])$ by P_{λ}.
2. Statement of results. Our main theorem in this paper is following

Theorem 2.1. P_{λ} establishes the following linear topological isomorphisms:

$$
\begin{equation*}
P_{\lambda}: \mathcal{O}^{\prime}(\tilde{S}(r)) \xrightarrow{\sim} \operatorname{Exp}_{\lambda}\left(C^{a+1}:\left[|\lambda| r: L^{*}\right]\right) \quad(r>1), \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
P_{\lambda}: \mathcal{O}^{\prime}(\tilde{S}[r]) \xrightarrow{\longrightarrow} \operatorname{Exp}_{\lambda}\left(C^{a+1}:\left(|\lambda| r: L^{*}\right)\right) \quad(r \geqslant 1) \tag{2.2}
\end{equation*}
$$

where $\operatorname{Exp}_{\lambda}\left(\boldsymbol{C}^{d+1}:\left[|\lambda| r: L^{*}\right]\right)=\mathcal{O}_{\lambda}\left(\boldsymbol{C}^{d+1}\right) \cap \operatorname{Exp}\left(\boldsymbol{C}^{d+1}:\left[|\lambda| r: L^{*}\right]\right), \operatorname{Exp}_{\lambda}\left(\boldsymbol{C}^{d+1}:\right.$ $\left.\left(|\lambda| r: L^{*}\right)\right)=\mathcal{O}_{\lambda}\left(\boldsymbol{C}^{d+1}\right) \cap \operatorname{Exp}\left(C^{d+1}:\left(|\lambda| r: L^{*}\right)\right)$, and $\mathcal{O}_{\lambda}\left(\boldsymbol{C}^{d+1}\right)=\left\{f \in \mathcal{O}\left(\boldsymbol{C}^{d+1}\right)\right.$; $\left.\left(\Delta_{z}+\lambda^{2}\right) f(z)=0\right\}$.

Let $M=\left\{z \in C^{d+1} ; z_{1}^{2}+z_{2}^{2}+\cdots+z_{d+1}^{2}=0, z \neq 0\right\}$. We define

$$
F f^{\prime}(z)=\left\langle f_{\xi}^{\prime}, e^{\xi \cdot z}\right\rangle \quad \text { for } z \in M
$$

$F f^{\prime}$ is the restriction of $P_{-i} f^{\prime}$ to M. We put
Holo $(M)=\left.\mathcal{O}\left(C^{d+1}\right)\right|_{M}$,

$$
\begin{aligned}
& \operatorname{Exp}(M, r / \sqrt{2})=\bigcap_{r^{\prime}>(r / \sqrt{2})}\left\{\psi \in \operatorname{Holo}(M) ; \sup _{z \in M}|\psi(z)| e^{\left.-r^{\prime}\|z\| \mid<\infty\right\},}\right. \\
& \operatorname{Exp}[M, r / \sqrt{2}]=\bigcup_{r^{\prime}<(r / \sqrt{2})}\left\{\psi \in \operatorname{Holo}(M) ; \sup _{z \in M}|\psi(z)| e^{-r^{\prime}\|z\|}<\infty\right\},
\end{aligned}
$$

and
$\operatorname{Exp}(M)=\operatorname{Exp}[M, \infty]$, and $\mathcal{J}(M)=\left\{f \in \mathcal{O}\left(C^{d+1}\right) ; f=0\right.$ on $\left.M\right\}$, where $\|z\|^{2}=\sum_{j=1}^{d+1}\left|z_{j}\right|^{2}$.
The topologies of Holo $(M), \operatorname{Exp}(M), \operatorname{Exp}(M, r / \sqrt{2})$ and $\operatorname{Exp}[M, r / \sqrt{2}]$ are defined to be the quotient topologies $\mathcal{O}\left(C^{d+1}\right) / \mathcal{G}(M), \operatorname{Exp}\left(C^{d+1}\right) /(\mathcal{G}(M) \cap$ $\left.\operatorname{Exp}\left(C^{d+1}\right)\right), \operatorname{Exp}\left(C^{d+1}:\left(r: L^{*}\right)\right) /\left(\mathcal{G}(M) \cap \operatorname{Exp}\left(C^{d+1}:\left(r: L^{*}\right)\right)\right.$, and $\operatorname{Exp}\left(C^{d+1}:\right.$ $\left.\left[r: L^{*}\right]\right) /\left(\mathcal{G}(M) \cap \operatorname{Exp}\left(C^{d+1}:\left[r: L^{*}\right]\right)\right)$ respectively. Then we have

Theorem 2.2. The transformation $F: f^{\prime} \rightarrow\left\langle f_{\xi}^{\prime}, e^{\xi \cdot 2}\right\rangle$ establishes the following linear topological isomorphisms:
$F: \operatorname{Exp}^{\prime}(\tilde{S}) \longrightarrow$ Holo (M),
$F: \mathcal{O}^{\prime}(\tilde{S}) \longrightarrow \operatorname{Exp}(M)$,
$F: \mathcal{O}^{\prime}(\tilde{S}[r]) \xrightarrow{\sim} \operatorname{Exp}(M, r / \sqrt{2}) \quad(r \geqslant 1)$,
$F: \mathcal{O}^{\prime}(\tilde{S}(r)) \longrightarrow \operatorname{Exp}[M, r / \sqrt{2}] \quad(r>1)$.
Corollary 2.3. i) For any $f \in \mathcal{O}\left(C^{d+1}\right)$ there exists a unique $g \in \mathcal{O}_{\lambda}\left(C^{d+1}\right)$ such that $f=g$ on M.
ii) For any $f \in \mathcal{O}\left(C^{d+1}\right)$ such that $\sup _{z \in M}|f(z)| e^{-A|z|}<\infty$ for some $A>0$, there exists a unique $g \in \operatorname{Exp}_{\lambda}\left(C^{d+1}\right)$ such that $f=g$ on M.
iii) For any $f \in \mathcal{O}\left(C^{d+1}\right)$ such that $\sup _{z \in M}|f(z)| \exp \left(-|\lambda| r^{\prime}\|z\| / \sqrt{2}\right)<$ ∞ for $\forall r^{\prime}>r$, there exists a unique $g \in \operatorname{Exp}_{\lambda}\left(C^{d+1}:\left(|\lambda| r: L^{*}\right)\right)$ such that $f=g$ on M.
iv) For any $f \in \mathcal{O}\left(C^{d+1}\right)$ such that $\sup _{z \in M}|f(z)| \exp \left(-|\lambda| r^{\prime}\|z\| / \sqrt{2}\right)<$ ∞ for some $r^{\prime}<r$, there exists a unique $g \in \operatorname{Exp}_{\lambda}\left(C^{d+1}:\left[|\lambda| r: L^{*}\right]\right)$ such that $f=g$ on M.
3. Outline of the proof of the results. We put $N=\{z=x+i y \in M$; $\|x\|=\|y\|=1\}$. $\quad d s$ and $d N$ denote the unique $O(d+1)$ invariant measures on S and N respectively. $\left\|\|_{2}\right.$ and $\| \|_{N}$ denote the L^{2}-norms on S and N with $\|1\|_{2}=\|1\|_{N}=1$ respectively. $H_{n, d}$ is the space of spherical harmonics of degree n in $(d+1)$ dimensions and $P_{n}(M)$ is the restriction to M of the space of homogeneous polynomials of degree n on C^{d+1}. In order to prove our theorems we need following lemmas.

Lemma 3.1. i) F is a one-to-one linear mapping of $H_{n, a}$ onto $P_{n}(M)$ and we have for $f \in H_{n, a}$

$$
\begin{equation*}
\|f\|_{2}=C_{n}^{1 / 2}\|F f\|_{N}, \quad \text { where } C_{n}=\frac{n!\Gamma(n+(d+1) / 2)}{\Gamma((d+1) / 2)} \operatorname{dim} H_{n, d} . \tag{3.1}
\end{equation*}
$$

ii) If ψ_{n} belongs to $P_{n}(M)$ and ψ_{l} belongs to $P_{l}(M)$ and $n \neq l$, we have

$$
\int_{N} \psi_{n}(z) \overline{\psi_{l}(z)} d N=0
$$

Outline of the proof. i) If we denote $P_{n, a}$ the Legendre polynomial of degree n and of dimension $d+1,\left\{P_{n, d}(\cdot \alpha) ; \alpha \in S\right\}$ spans $H_{n, d}$. For f $=P_{n, \alpha}(\cdot \alpha)$ we have $F f(z)=\left(n!\operatorname{dim} H_{n, d}\right)^{-1}(z \cdot \alpha)^{n}$, which shows $F\left(H_{n, d}\right) \subset$ $P_{n}(M)$. Since $\operatorname{dim} H_{n, d}=\operatorname{dim} P_{n}(M), F$ is surjective. It is valid that

$$
\int_{S} P_{n, \alpha}(s \cdot \alpha) \overline{P_{n, \alpha}(s \cdot \beta)} d s=C_{n}^{\prime} \int_{N}(z \cdot \alpha)^{n} \overline{(z \cdot \beta)^{n}} d N
$$

where

$$
C_{n}^{\prime}=\Gamma\left(n+\frac{d+1}{2}\right) /\left(\Gamma\left(\frac{d+1}{2}\right) n!\operatorname{dim} H_{n, a}\right),
$$

so we have (3.1) for $\forall f \in H_{n, d}$ and (3.1) implies that F is injective.
ii) Since $\int_{N}(z \cdot \alpha)^{n} \overline{(z \cdot \beta)^{l}} d N=0$ we can prove ii). Q.E.D.

Lemma 3.2. F is a one-to-one linear mapping of $\operatorname{Exp}^{\prime}(\tilde{S})$ onto Holo $(M), \mathcal{O}^{\prime}(\tilde{S})$ onto $\operatorname{Exp}(M), \mathcal{O}^{\prime}(\tilde{S}[r])$ onto $\operatorname{Exp}(M, r / \sqrt{2})$, and $\mathcal{O}^{\prime}(\tilde{S}(r))$ onto $\operatorname{Exp}[M, r / \sqrt{2}]$.

Outline of the proof. From [1] Theorem 4.1 (Martineau's theorem) and Theorem 7.1 we have $F\left(\operatorname{Exp}^{\prime}(\tilde{S})\right) \subset$ Holo $(M), \quad F\left(\mathcal{O}^{\prime}(\tilde{S})\right) \subset \operatorname{Exp}(M)$, $F\left(\mathcal{O}^{\prime}(\tilde{S}[r])\right) \subset \operatorname{Exp}(M, r / \sqrt{2})$, and $F\left(O^{\prime}(\tilde{S}(r))\right) \subset \operatorname{Exp}[M, r / \sqrt{2}]$. For all ψ \in Holo (M) there exist $\psi_{n} \in P_{n}(M)(n=0,1,2, \cdots)$ such that $\psi=\sum_{n=0}^{\infty} \psi_{n}$. By Lemma 3.1 there exist $f_{n} \in H_{n, a}(n=0,1, \ldots)$ such that $\psi_{n}=F f_{n}$ and $\left\|f_{n}\right\|_{2} \leqslant \sqrt{C_{n}} K_{n}$, where $K_{n}=\sup _{z \in N}\left|\psi_{n}(z)\right|$. If ψ belongs to Holo (M) (resp. $\psi \in \operatorname{Exp}(M), \psi \in \operatorname{Exp}(M, r / \sqrt{2}), \psi \in \operatorname{Exp}[M, r / \sqrt{2}])$ we have

$$
\limsup _{n \rightarrow \infty} K_{n}^{1 / n}=0
$$

(resp. $K_{n} \leqslant C(\sqrt{2} A e / n)^{n}$ for some $A>0, K_{n} \leqslant C_{r^{\prime}}\left(r^{\prime} e / n\right)^{n}$ for $\forall r^{\prime}>r, K_{n} \leqslant$ $C^{\prime}\left(r^{\prime} e / n\right)^{n}$ for some $r^{\prime}<r$, where $C, C_{r^{\prime}}, C^{\prime}$ are constants). From these facts and [1] Theorem 6.1, if we put $f^{\prime}=\sum_{n=0}^{\infty} f_{n}$ we get $f^{\prime} \in \operatorname{Exp}^{\prime}(\tilde{S})$ (resp. $\mathcal{O}^{\prime}(\tilde{S})$, $\left.\mathcal{O}^{\prime}(\tilde{S}[r]), \mathcal{O}^{\prime}(\tilde{S}(r))\right)$ and $F f^{\prime}=\psi$. The injectivity of F is proved by Lemma 3.1.
Q.E.D.

Proof of Theorem 2.1. From [1] Theorems 4.1 and 7.1 we have $P_{\lambda}\left(\mathcal{O}^{\prime}(\tilde{S}(r))\right) \subset \operatorname{Exp}_{\lambda}\left(C^{d+1}:\left[|\lambda| r: L^{*}\right]\right)$ and $P_{\lambda}\left(\mathcal{O}^{\prime}(\tilde{S}[r])\right) \subset \operatorname{Exp}_{\lambda}\left(C^{d+1}:\left(|\lambda| r: L^{*}\right)\right)$ and P_{λ} is injective. Let $\tilde{\psi}$ be in $\operatorname{Exp}_{\lambda}\left(C^{d+1}:\left[|\lambda| r: L^{*}\right]\right),\left.\tilde{\psi}\right|_{M}=\psi$ and $\psi_{1 / i 2}(z)=\psi(z / \lambda i)$. Then $\psi_{1 / i \lambda} \in \operatorname{Exp}[M, r / \sqrt{2}]$ and there exists $f^{\prime} \in \mathcal{O}^{\prime}(\tilde{S}(r))$ such that $F f^{\prime}=\psi_{1 / \lambda}$ from Lemma 3.2. On the other hand, from [1] Theorem 7.1 there exists $h^{\prime} \in \operatorname{Exp}^{\prime}(\tilde{S})$ such that $\tilde{\psi}=P_{\lambda} h^{\prime}$. For any $z \in M$ we have $F h^{\prime}(z)=\tilde{\psi}(z / i \lambda)=\psi(z / i \lambda)$, so we get $F f^{\prime}=F h^{\prime}$ and $f^{\prime}=h^{\prime}$ by Lemma 3.2. From [1] Theorem 4.1 and the closed graph theorem P_{λ} and P_{λ}^{-1} are continuous. Then we obtain (2.1). Similarly we can prove (2.2). Q.E.D.

Theorem 2.2 follows from Theorem 2.1 and Lemma 3.2. From [1] Theorem 7.1 and Theorems 2.1 and 2.2 we obtain Corollary 2.3.

Full details will appear elsewhere. The author would like to thank Professor M. Morimoto for his helpful suggestions.

Reference

[1] M. Morimoto: Analytic functionals on the sphere and their Fourier-Borel transformations, Complex Analysis, Banach Center Publications, 11, PWN-Polish Scientific Publishers, Warsaw, 223-250 (1983).

