79. Dedekind Domains which are not obtainable as Finite Integral Extensions of PID

By Norio Adachi

Department of Mathematics, Waseda University (Communicated by Shokichi IyanaGa, M. J. A., Oct. 14, 1985)

All known Dedekind domains are obtainable as the integral closure of a suitable PID R in a finite extension of the quotient field of R. But the converse is not the case, as we shall see in this note (cf. Zariski-Samuel, [2], Chap. V, § 8).

§1. An example. Let K be a quadratic extension of the field of rational numbers Q whose class number is greater than 1. Let p be a rational prime number which is the product of two distinct prime elements in K, say, π and $\pi': p = \pi \pi'$. The density theorem of prime ideals assures the existence of such a prime number.

Let S be the set of the elements π^n $(n \ge 1)$. The set S is a multiplicative set of the ring A of algebraic integers in K. Let A_s be the quotient ring of A with respect to the set S. Then the ring $A_s = R$ is a Dedekind domain, since A is a Dedekind domain. It is easily seen that $A_s \cap Q = Z$ and the integral closure of Z in K is the ring A, which is a proper subring of A_s .

Next we show that the ring A_s is not a PID. For this purpose it suffices to prove that the ideal class group of A_s is isomorphic with that of A, which is the ideal class group of the field K. Let I_0 be the semigroup of ideals of A prime to the ideal $A\pi$, and I_s the semigroup of ideals of A_s . Consider the mapping $a \rightarrow aA_s$. This is clearly a bijection of I_0 onto I_s . Suppose $aA_s = (\alpha/\pi^k)A_s$ for some $\alpha \in A$ and a positive integer k. Since $a \subseteq (\alpha/\pi^k)A_s$, we have $\pi^s a \subseteq \alpha A$ for some integer s. As A is a Dedekind domain, there exists an ideal b of A such that

(1) $\pi^s \alpha = \alpha b$. Since $\alpha/\pi^k \in \alpha A_s$, we have $\pi^t \alpha A \subseteq \alpha$ for some integer t. By the same reason as above, we have an ideal c of A satisfying

(2) $\pi^t \alpha A = \mathfrak{ac}.$

From (1) and (2) we obtain $\pi^m A = bc$ for some m. This implies that the ideal b divides the principal ideal $\pi^m A$. Thus we see that b is principal, and so is α . Since any ideal class of A has a representative which is prime to $A\pi$, we have proved that the ideal class group of K is isomorphic with the ideal class group of A_s . Thus we have the following :

There exists a Dedekind domain R which is not obtained as the integral closure of $R \cap F$ in the quotient field K of R for any proper subfield F of K. §2. Another possible example and a question. Let l be any fixed prime number. Let K be the cyclotomic Z_l -extension over the field Q, Athe ring of algebraic integers in K, and A' the ring of l-integers in K, namely, $A' = \{l^{-s}x | x \in A, s \in N\}$. The ring A' is the integral closure in Kof the ring of rational l-integers. Moreover we find that A' is a Dedekind domain and that the ideal class group of A' is isomorphic to $\lim_{n \to \infty} C_n$, where C_n is the ideal class group of the field K_n whose degree is l^n over Q, since every prime number other than l is finitely decomposed in K, and the rings $A' \cap K_n$ are Dedekind domains. The inclusion map $C_n \rightarrow C_{n+1}$ is injective for all n, since the prime number l does not divide the order of C_n . Therefore A' is not a PID, provided the class number of K_n is greater than 1 for some n. Thus we have shown the following :

The quotient field K of the Dedekind domain A' has no proper subfield over which K is of finite degree. The integral domain A' is not a PID, provided there exists a positive integer n such that the class number of K_n is greater than 1.

However, as far as known for small values of l and n, the class number of the field K_n is 1. So we ask the following :

Are there a prime number l and a positive integer n such that the field K_n which is a cyclic extension of Q with degree l^n and with conductor l^{n+1} has the class number greater than 1?

Remark 1. For l=2, it is conjectured by H. Cohn that the class number of K_n is 1 for every n.

Remark 2. For any fixed prime number l it is known that the class number of K_n is bounded for all n ([1]).

References

- [1] Washington, L.: The non-*p*-part of the class number in a cyclotomic Z_p -extensions. Invent. math., 49, 87-97 (1979).
- [2] Zariski, O. and Samuel, P.: Commutative Algebra I. Van Nostrand (1958).