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A Formula of Eigen.Function Expansions I.
Case of Asymptotic Trees

By Kazuhiko AOMOTO
Department of Mathematics, Nagoya University

(Communicated by Kunihiko KODAIRA, M. J. A., Jan. 12, 1985)

1o In this note we present a new method of giving eigen-function
expansions on a discrete set, namely a connected graph with infinitely
many vertices.

Our method is to use Poisson kernels which are defined as limits of
the quotient of Green kernels having different sources. This has been
successfully applied to the case of symmetric spaces and free groups ([1],
[5]). By technical reason we shall restrict ourselves to the case of asymp-
totic trees. Details will be published elsewhere (see [2] and [3]).

Let F be an asymptotic tree with base point O, namely there exists a
compact subgraph F* of F containing O such that the complement
consists o only disjoint trees. For , ’ e F--F*, we say that " is greater
than " and denote it by ’" if dis (O,")dis(O,’) and there exists a
minimal geodesic segment from " to " in/’--/*.

The symbol (ff,...,’}} will denote that a sequence of vertices
{’, %..., y} defines a chain of a minimal geodesic segment.

Let A be a linear difference operator on l[F] the space o C-valued
square summable functions on F:
(1.1) (Au)(Y) ,,
or u(7)e l[F], such that 1) ar,r,=O for dis(’,")_2 and at, r,=/=0 if " is
adjacent to ’. 2) at, r, is real and symmetric" ar, r,=ar,,r. We assume the
following condition"

[C1] min 1
-c.

Then it is well-known that A defines a self-adjoint operator on l[F]
("Hamburger’s condition"). There exists the unique Green unction
G(’, y’]z) representing the resolvent (z-A)- which is holomorphic in z for
Im z =/= 0 and satisfies
(1.2) r’r ]G(7, r’lz)12<

Let Y0 be an arbitrary point of F. Then we have the ollowing basic
Lemma 1. The quotient G(7o, 7’lz)/G(7o, 7]z) is independent of 7o e F

provided that dis (70, 7)dis (70, 7’) and that ’ is adjacent to. 7 for 7, 7’ e F
--F*. We shall denote this ratio by a(7,

In fact let F be the set of vertices " e F such that dis (O, y)<:n. We
consider the Dirichlet problem for A in F

(z-A)u=v in/(1.3)
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for given v e/[/], where/ denotes the open kernel of F. We denote
by Vn)O",’’lz) and n(?,,lZ) the corresponding Green kernel and the
quotient G(O, 7lz)/G(O,?lz)for 7 adjacent to ? and 7 respectively.
Then we can prove that the following limits exist:

(1.4) "lim G(n)(, ’z)= G(r,
.lim a(n)(, ’]z)=(r, r’]z) or Imz0

and that the ratios
(1.5) G(70, Z’z)/G(70, 7]z)=(r, 7’]z)
are independent of r0 e F for dis (r0, r’)=dis (0, )+1. a(r, r’[z) satisfies
the fundamental relations"

(1.6) (7, 7 z)= a’r
z+ at, r- r’ ar, r’(7, 7’[z)’

for 7 and ((7, Y)), where r’ runs over the set where rr’ and
By using Lemma 1, we can prove the following proposition"

Proposition 1. Let =(0, , ..., , ...) be a minimal infinite geode-
sic line starting from O. Let =Y be an element of F such that ((0, , ...,, r+, ..., r)), (0, r, ..., r)c but not (0, rl, ", rm, rm+l), (We denote
by the element .) Assume that e F-F*. Then the limit along
the geodesic segment

(1.7) K(r, z)=lim G(V, r’lz) G(, V
,-, G(O, r’z) G(O, r z)

exists and is meromorphic in z for Im zO. When F is itself a tree, this

is simply equal to

(1.8) (r , V+l z)’’’ (Vn-,, Y z)
(O, r, z)... (r_,, r l z)

We assume further the following assumption:
[C2] G(r,r’[iO) exists for almost all 2e a(A)--a(A), where a(A) and

a(A) denote the spectrum and point spectrum of A respectively.
The boundary OF of F is defined to be the set of all infinite minimal

geodesic segments starting from the origin O. We denote by the union

of F and OF which turns out to be compact by the standard topology.
Definition. We denote by (r0) for r0 e F--F*, the set of all minimal

infinite geodesic lines starting from O such that r0 e . The Radon measure

z(d] d2) on X R is defined by

(1.9) I({r}d2) lim hi’ G(O r 2+ ih) d2= ]u(O)iu(r)

r>ro

These formulae make seEse from the following elementary lemma

Lemma 2. Le (2) be fcHo of boded vriHo. Le {2} be e
se of discontinuous poigs of (2). The

d= (+0)-(-0)
o 2+ih--z ,,<;<,



No. 1] Eigen-Functio,n Expansions 13

for <a’<fl’< and ’, e {2}.
In fact we have only to apply this to the formula for the spectral

kernel Off, r’12) of A"

Now we can state the Main Theorem"
Theorem of Eigenfunction Expansions. Under the conditions [C1]

and [C2]
(1.13) 0(7,

2--i0)
a<< d

value 2.
In fact

(1.14) o(r, r’[)-0(r, r’l)

limh EIi d2G(7, 7"]2+ ih)G(r’, 7"12-ih)
l$O 1" T"F

lim lim --h :dG(r, r"l+ ih)G(r’, r"l- ih)
r" rn k 7

+limlim--h Z idaG(r’ r"la+ih)G(r’, r"la-ih)
n--.oo h 7 7" F F

+limlimh [d2 G(7, r"12+ih) G(7’, 7"12-ih)
o ,,-r G(O,r"12+ih) G(O, r"12-ih)

x IG(O,

+lira r ,,
d2).

a<t< da

Namely for u, v e l[F], we have

(1.15)

(.6) (Au, v)=[
where g(l 2) and (2) are the generalized Fourier transforms of u(r) and
v(r).

(1.17)
t()= K(r, )v(r).

2. Example of periodic trees. Let F be a finite connected graph
with base point O and P be its universal covering graph, namely the set
of all finite minimal geodesic segments starting from O. is a connected
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tree which is locally bounded. Let /0 be the set of all closed minimal
geodesic loops with base point O, so that/’ can be regarded as the quotient
/0\/. We denote by the projection"/-/’. We consider a linear dif-
ference operator of nearest neighbours A on l(F) satisfying the properties
(1.1). A is also regarded as a bounded linear self-adjoint difference oper-
ator on l(/) which is invariant with respect to the action of /0. We
denote by Wr for 7 e/ the inverse of the diagonal of the Green kernel
G(, lz). Remark that W depends only on ’=() so we also denote it by

Wr. Then we have
Theorem 2. The functions Wr(z) are characterized by the following

algebraic system of equations

(2.1) z-ar.r-Wr=(<,,)>y -Wr+ W’+ , /
for e 1" and the asymptotic forms
(2.2) Wr(z):z+O(1) for [zl> 1.
Moreover for ((, ’) for , ’ e P and dis (7", )< dis (7", ’), the quotient

a(7, 7’lz) G(ff’, ’[z)= G(?, ’lz) is equal to

(2.3) --Wr+ /W+4a’’Wr/Wr"
2at, r,

For proof, see [3].
Corollary 1. The Green function G(?, ?’lz) is an algebraic function

of z. So that i satisfies the conditions (C1)-(C2).
By using (2.1), we can also prove that G(?,?]z) has no real poles.

Hence we have
Corollary 2. A has no point spectrum on l(). A has only a finite

bands of absolute continuous spectrums.
A special ease o the ormula (1.14) has been given in ease where F is

a free group and/" consists of only one point. (See [1].) When/" is equal to
Z, our result completely agrees with a result in [8] or more generally in [6].
As a generalization of periodic Toda lattices, one may ask the following

Question. Is the number of continuous bands of spectrums of A
equal to or smaller than the number of vertices of F?
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