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1. Introduction. Let X be a connected CW complex with base
point which is a vertex o X. And let G(X) and Go(X) be the space o
self homotopy equivalences o X with the compact open topology and
the space (subspace of G(X)) o self homotopy equivalences of X pre-
serving the base point, respectively. When X is an Eilenberg-
MacLane complex K@, n), the weak homotopy type o G(X) and Go(X)
are completely determined by R. Thorn [4] and D. H. Gottlieb [1], but
it seems that little, is known about the. homotopy type of G(X) and
Go(X).

2. Results. Now, let X and Y be connected locally finite CW
complexes with base points. Then there exists the ollowing homeo-
morphisms (see [3]),

(x xY)-x xY (x) x (Y9,
(X Y)0x’X[r Y0xxr-- (Xx, X)(r,v) (Y, Y0)(x’),

where Zy denotes the space o maps o K to Z preserving the base
points with the compact open topology, (Z, Z’)(’) denotes the space
o maps of (K, L) to (Z, Z’) and (Z, Z’)(,) is regarded as a subspace of
Z. Under these correspondences we have the following two theo-
rems.

Theorem 1. Let X and Y be connected 19cally finite CW com-
plexes with base points. For given n>O, assume that s(X)=O .for
every i>n and s(Y)= 0 for every i<=n. Then we have

G(X X Y)= G(X)" G(Y)x,
Go(X Y)=(G(X), Go(X))(r’) (G(Y), Go(Y))(x’x.

Theorem 2. For given n0, let X be a connected locally finite
CW complex with base point whose dimension is not greater than n
and let Y be an n-connected locally finite CW complex with base point.
Then the same formulas on G(X Y) and Go(X Y) as in Theorem 1
hold.

These theorems are obtained by considering the induced homo-
morphisms of homotopy groups o self map o (X Y, (x0, Y0)).

Lst X be a connected locally finite CW complex with base point.
Then every arcwise connected component o G(X) has the sams hmo-
topy type. The same fact holds or Go(X). More generally, we have
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the following

Proposition 1. Let X be a homotopy associative H-space with
unit e. Suppose fo.r each element x of X there exists an element x’
of X such that x. x’ and x’.x both are contained in the arcwise con-
nected component of e. Then, every arcwise connected component of
X has the same homotopy type.

Let us consider a relation between G(X)and Go(X)of a connected
CW complex X with base point. We have

Proposition 2. Let X be a connected CW complex wih base point
which is also an H-space. Then G(X) has the same weak homotopy
type as X Go(X).

Now, by performing a proof within the category o compactly
generated spaces and maps along the argument used in the proofs of
Theorems 1 and 2, we can obtain the ollowing

Theorem :). For given n)O, let X be a connected CW complex
with base point and le Y be an n-connected CW complex with base
point. Assume that dimXn o.r z(X)--0 for every in. Then the
following holds

G(X Y)G(X) G(Y) G(X)o G(Y),
Go(X Y)Go(X) Go(Y) G(X)o G(Y)Xo

where means to have the same weak homotopy type.
By setting X=K(u, n) in Theorem 3, we have
Corollary 1. Let X be an n-connected CW complex with base

point. Then we have
Go(K(, n) X) Aut () Go(X) G(X)oK(’n).

Corollary 2. Let X be a simply connected finite CW complex
with base point. Then we have

G(S X)0(2) G(X) 9G(X),
Go(S X)Z Go(X) [2G(X),

where 0(2) is the orthogonal group o.f degree 2 and 9G(X) is the lo.op
space of G(X) based at the identity map idx of X.

:). Applications. Suppose X and Y are connected CW com-
plexes with base points. Let us denote by (X) and e(Y) the group o
based homotopy classes of self homotopy equivalences of X and Y
respectively. Then in the ollowing we can define, an action of the
direct product e(X)e(Y) of e(X) and e(Y) on the group [X, G(Y)]0
whose, multiplication is induced by the H-structure in G(Y). Let k
be an element o Go(Y) and let G(Y)be the arcwise connected com-
ponent o G(Y) containing ida. We define, a self map/ of G(Y) by
using the multiplication in G(Y) as ollows"

/(c) k-. k ( e G(Y)),
where k- is a fixed element of Go(Y) which represents the inverse
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element of [k]. Let [f] be. an element of [X, G(Y)]o=[X, G(Y)]0, then
we have a well-defined action o e(X) e(Y) on [X, G(Y)]0 as ollows"

([h], [/c])*[f] [/ of h].
I =(X)= 0 or every ]n and Y be n-connected, then we define

a correspondence 2 o e(X Y) to. (e(X)z(Y))(R)[X, G(Y)]0 which is a
semi-direct product of the groups e(X) e(Y) and [X, G(Y)]0 defined by
the action introduced above. As a bi-product of Theorems 1 and 3,
we have the following

Theorem 4. For given nO, let X be a connected CW complex
with base point such that (X)---0 for every in and let Y be an n-
connected CW complex with base point. Then is an isomorphism

of e(X Y)onto the semi-direct product group (e(X) e(Y))(R)[Y, G(X)]0
defined by the action introduced above.

As a special case of this theorem, we have a generalization o the
theorem o S. Sasao and Y. Ando [2] as ollows.

Corollary. Let X be an n-connected CW complex with base point.
Then we have an isomorphism 2"

e(K(z, n) X) ;(Aut () e(X))(R)[K(, n), G(X)]0,
where the group on the right hand is a semi-direct product of two
groups Aut () e(X) and [K(, n), G(X)]0.

Finally, by observing that the direct product (X)e(Y) of the
groups e(X) and e(Y) is acting on the group [Y, G(X)]o-[Y, G(X)]0,
we have. the ollowing result.

Theorem 5. For given nO, le X be a connected CW complex
of dim X=n with base point and let Y be an n-connected CW complex
with base point. Suppose that [X, G(Y)]0 is trivial, then 2 is an iso-
morphism of e(X Y) onto the semi-direct product group (e(X) e(Y))
(R)[Y, G(X)]0 defined by the action introduced above.

As a special case o Theorem 5, we have
Corollary. For given nO, let X be a connected CW complex of

dimXn with base point. Then we have the following isomorphism
2" (X K(, n+ 1)) >((X) Aut ())([K(, n+ 1), G(X)]0.

Details will appear elsewhere.

References

1 D. H. Gottlieb: A certain subgroup of the fundamental group. Amer. J.
Math., 87, 840-856 (1965).

[2] S. Sasao and Y. Ando: On the group (K(=, 1)X) for l-connected CW-
complexes X. Kodai Math. J., 5, 65-70 (1982).

3 N. E. Steenr’od: A convenient category of topological spaces. Michigan
Math. J., 1.4, 133-152 (1967).

4 R. Thom: L’homologie des espaces fonctionnels. Colloque de Topologie AI-
gbrique, Louvain (1956).


