61. Invariants of Reductive Lie Groups of Rank One and Their Applications

By Haruhisa NAKAJIMA
Department of Mathematics, Tokyo Metropolitan University
(Communicated by Shokichi IYANAGA, M. J. A., June 12, 1984)

§ 1. Introduction. Throughout this note, G will denote a reductive complex linear algebraic group. A representation of G is a finite dimensional vector space V over the complex number field \mathbb{C} together with a morphism of algebraic groups $\varphi: G \rightarrow GL(V)$. We will consider φ together with the representation space V and denote a representation as above by φ , by (φ, G) or by $\varphi(G)$. Let $\mathbb{C}[\varphi]$ be the coordinate ring of the affine space φ on which G acts naturally and let $\mathbb{C}[\varphi]^G$ be the G-subalgebra consisting of all invariant polynomials in $\mathbb{C}[\varphi]$ under this action of G. (φ, G) is said to be completely co-intersected (abbrev. COCI) if $\mathbb{C}[\varphi]^G$ (and so φ/G) is a complete intersection. Recall that (φ, G) is said to be coregular if $\mathbb{C}[\varphi]^G$ is a polynomial ring over \mathbb{C} . All coregular representations of simple algebraic groups were determined in [2, 10].

When Gx is closed in φ for an element x in φ , the isotropy group G_x is reductive, and we call the natural representation of G_x on $T_xV/T_x(G_x)$ the slice representation at x, which is denoted by φ_x . Then $\varphi_x/G_x \rightarrow \varphi/G$ is etale at the image of x in φ/G ([6]), and we easily get

Lemma (1.1). Every slice representation of a COCI representation of G is COCI.

As any representation of G is completely reducible, [11, (5.2)] implies

Lemma (1.2). Every subrepresentation of a COCI representation of G is COCI.

These lemmas are useful in studying COCI representations of reductive groups.

§ 2. Reductive groups of rank one. In this section, we suppose that rank G=1. Let T be a maximal torus of G and ν : Hom $(T, \mathbb{C}^*) \cong \mathbb{Z}$ a fixed isomorphism. For a representation ρ of G, let ρ^+ (resp. ρ^-) be the direct sum of all ρ_{χ} with $\nu(\chi)>0$ (resp. $\nu(\chi)<0$), where ρ_{χ} is the subspace of ρ of weight $\chi \in \operatorname{Hom}(T, \mathbb{C}^*)$. Moreover, put $q_T(\rho)=\min\{\dim \rho^+,\dim \rho^-\}$ and $p_T(\rho)=\min\{|\{\chi|\rho_{\chi}\neq 0,\nu(\chi)>0\}|,|\{\chi|\rho_{\chi}\neq 0,\nu(\chi)<0\}|\}$.

Theorem (2.1). Let ρ be a representation of G and suppose that (ρ, G) is COCI. Then:

- (1) If $G^0 \neq T$ and $q_T(\rho) \geq 4$, then $q_T(\rho) = 4$ and ρ/ρ^{G^0} is reducible as a representation of G^0 .
 - (2) If $G^0 = T$ and $q_T(\rho) \ge 4$, then $q_T(\rho) \le 6$, $p_T(\rho) \le 1$ and $Z_G(T) = G$. As a special case of (the proof) of (2.1), we have

Theorem (2.2). Let ρ be a representation of G such that $Z_G(T)$ is diagonalizable on $\rho^+\oplus \rho^-$. Suppose that (ρ,G) is COCI. Then:

- (1) If $q_T(\rho) \ge 4$, then $G^0 \ne T$, $q_T(\rho) = 4$ and ρ/ρ^{G^0} is a reducible representation of G.
 - (2) If $G = Z_G(T)$, then $q_T(\rho) \leq 2$.

Remark (2.3). When we use the slice method in Sect. 3, the assumption on $Z_{G}(T)$ in (2.2) is not essential. In fact, finite principal closed isotropy groups of some algebraic groups are abelian.

A version (e.g. [8]) of Grothendieck's result on purity is useful in showing (2.1).

§ 3. Applications. For representations φ , ψ of G, we adopt the following notation: $\varphi + \psi$ (resp. $k\varphi$) denotes the direct sum of φ and ψ (resp. of k copies of φ) and $\varphi - \psi$ denotes the virtual representation in the representation ring of G satisfying $(\varphi - \psi) + \psi = \varphi$. If G is connected and φ and ψ are irreducible, $\varphi\psi$ stands for the irreducible component of highest weight in $\varphi \otimes \psi$. If H is a subgroup of G, $(\varphi(G), H)$ denotes the restriction of φ to H.

Hereafter let G be a simple, connected and simply connected algebraic group of rank r and let $\varphi_1, \dots, \varphi_r$ denote the basic irreducible representations of G whose ordering is defined in [1]. We confuse G with its Dynkin diagram. If $\gamma: H \cong G$, (φ, G) is identified with $\gamma(\varphi, H)$ (note $\mathbf{D}_3 \cong \mathbf{A}_3$).

Theorem (3.1). Let φ be a nontrivial irreducible representation of G. If (φ, G) is COCI and not coregular, then (φ, G) or its dual can be identified with one of $\varphi_1^{\mathfrak{h}}(\mathbf{A}_1)$, $\varphi_1^{\mathfrak{h}}(\mathbf{A}_1)$, $\varphi_1^{\mathfrak{h}}(\mathbf{A}_3)$ and $\varphi_1\varphi_2(\mathbf{A}_3)$.

Corollary (3.2). Let φ be a representation of G which does not contain a nonzero trivial subrepresentation. If (φ, G) is COCI and there is a non-coregular irreducible subrepresentation of φ , then φ is irreducible.

Proof. If rank G=1, this is obvious (cf. (2.2)), and otherwise the assertion easily follows from (3.1) (cf. (1.1)).

Example (3.3) ([3]). $\varphi_1^i(\mathbf{A}_n)$ is COCI if and only if (i, n) equals to one of (1, n), (2, n), (3, 1), (4, 1), (5, 1), (6, 1), (3, 2) and (3, 3). This is a direct consequence of (1.1) and classical invariant theory.

The next theorem, in which it is not necessary to assume that G is simple, follows immediately from (1.1), (2.1) and [7].

Theorem (3.4). Let φ be a representation of G and let T' be a maximal torus of a simple 3-dimensional subgroup G' of G. Suppose that

- (1) For some $v \in \varphi^{T'}$, $N_G(T')v$ is closed and $(N_G(T')/T')_v$ is finite.
- (2) The conclusions of (2.1) are not satisfied for ρ , T = T' and $G = G_v$. Here $\rho = \varphi \operatorname{Ad}(G)$ if $G_v^0 = T'$, and otherwise $\rho = \varphi \operatorname{Ad}(G) + \operatorname{Ad}(G_v)$.

Then (φ, G) is not COCI.

Using (2.2), we can weaken the condition (2) in (3.4) (cf. (2.3)), but (3.4) is sufficient for showing (3.1).

Sketch of the proof of (3.1). Let φ be an irreducible representation of G which is not listed in (3.1). By (2.2) and (3.3) we may assume $r \ge 2$ and $(\varphi, G) \ne (\varphi_1^i, \mathbf{A}_n)$. Because (φ, G) is not coregular, there is a maximal torus T' of a simple 3-dimensional subgroup G' of G satisfying (1) in (3.4) and $q_{T'}(\varphi - \operatorname{Ad}(G)) \ge 3$ (cf. [10, (5.2)]). Moreover such a torus is effectively listed in [10, § 5]. Thus using [4, 5] and tensor decompositions in [10], we can estimate $q_{T'}(\varphi - \operatorname{Ad}(G))$, which implies that almost all φ 's are not COCI (cf. (3.4)). (Sometimes, one needs to study the decomposition of $(\varphi(G), N_G(G')^0)$.) If necessary, we furthermore compute G_v^0 and $p_{T'}(\varphi - \operatorname{Ad}(G))$, and consequently (3.1) follows.

Example (3.5). Let $T' = \mathbb{C}^* \subset G' = \mathbb{A}_1 \subset G = \mathbb{A}_n$ where $(\varphi_1(\mathbb{A}_n), \mathbb{A}_1) = k\varphi_1(\mathbb{A}_1) + \mathbb{1}_m$, m = k+1, k+2 or k+3. Then $\varphi = \varphi_3(\mathbb{A}_n)$ (n > 8) satisfies (1) of (3.4). The inequality $q_{T'}(\varphi - \operatorname{Ad}(G)) \ge 7$ is shown as follows: For simplicity, suppose n = 9. Because $\varphi_1^{\otimes 3}(\mathbb{A}_1) = \varphi_1^3(\mathbb{A}_1) + 2\varphi_1(\mathbb{A}_1)$, $(\varphi_3(\mathbb{A}_9), G')$ contains $\varphi_1^3(G') + 12\varphi_1^2(G') + 26\varphi_1(G')$. Thus $q_{T'}(\varphi - \operatorname{Ad}(G)) \ge 40 - q_{T'}(9\varphi_1^2(G') + 24\varphi_1(G')) \ge 7$.

Example (3.6). Let $T' = \mathbb{C}^* \subset G' = \mathbb{C}_1 \subset G = \mathbb{C}_2$ and $\varphi = \varphi_2^3$ where $(\varphi_1(\mathbb{C}_2), \mathbb{C}_1) = 2\varphi_1(\mathbb{C}_1)$. Then (1) of (3.4) is satisfied. Since $(\varphi(G), G')$ contains $\varphi_1^6(G') + 2\varphi_1^4(G') + 2\varphi_1^2(G')$ and $(\operatorname{Ad}(G), G') = 3\varphi_1(G') + 1$, we have $q_{T'}(\varphi - \operatorname{Ad}(G)) \ge 6$ and $p_{T'}(\varphi - \operatorname{Ad}(G)) \ge 3$, which shows that $\varphi_2^3(\mathbb{C}_2)$ is not COCI.

Example (3.7). For exceptional groups G, using the facts stated in [10, p. 189, 190], we can easily examine the conditions in (3.4). Especially if G is of type \mathbf{E} , our assertion is almost trivial. Let $T' = \mathbf{C}^* \subset G' = \mathbf{A}_1 \subset G = \mathbf{G}_2$ where $(\varphi_1(\mathbf{G}_2), G') = 2\varphi_1(G') + 1_s$. Clearly $(\mathbf{Ad}(\mathbf{G}_2), G') = \varphi_1^2(G') + 4\varphi_1(G') + 1_m$. By the identity $(\varphi_1(\mathbf{G}_2), \mathbf{A}_1^{(1)} \times \mathbf{A}_1^{(2)}) = \varphi_1(\mathbf{A}_1^{(1)}) \otimes \varphi_1(\mathbf{A}_1^{(2)}) + \varphi_1^2(\mathbf{A}_1^{(2)}), \ (\varphi_1^2(\mathbf{G}_2), G') \supset 3\varphi_1^2(G') + 8\varphi_1(G')$. Thus $p_{T'}(\varphi_1^2 - \mathbf{Ad}(\mathbf{G}_2)) \geq 2$ and $q_{T'}(\varphi_1^2 - \mathbf{Ad}(\mathbf{G}_2)) \geq 6$, which implies our assertion for $\varphi = \varphi_1^2(\mathbf{G}_2)$.

Theorem (3.8). For each coregular irreducible representation (φ, G) , we can effectively give a number n_{φ} such that $(n_{\varphi}\varphi, G)$ is not COCI.

Example (3.9). $(m\varphi_1, \mathbf{A}_n)$ $(n \ge 2)$ is COCI if and only if $m \le n+2$. Remark (3.10) ([9]). For a fixed G, up to outer automorphisms and additions of trivial representations, there are only finite many

COCI representations. This follows from (1.2), (3.2) and (3.8).

Since the syzygies of $\mathbb{C}[\varphi]^a$ are constructive, in principle, we can determine COCI representations of G.

Example (3.11) ([9]). Let φ be a representation of \mathbf{A}_1 which does not contain nonzero trivial subrepresentation. Then (φ, \mathbf{A}_1) is COCI if and only if φ is a subrepresentation of φ_1^5 , φ_1^6 , φ_1^6 , $\varphi_1^2 + \varphi_1^3$, $\varphi_1^2 + \varphi_1^4$, $2\varphi_1 + \varphi_1^2$, $\varphi_1 + 2\varphi_1^2$, $2\varphi_1^3$, $4\varphi_1$, $3\varphi_1^2$, $\varphi_1 + \varphi_1^3$, $\varphi_1 + \varphi_1^4$, $2\varphi_1^4$.

When the author was starting the study of COCI representations, he was inspired by the results in [10, 12]. The contents of this note were partly reported in [9] with some additional facts.

References

- [1] N. Bourbaki: Groupes et algèbres de Lie. Chs. 7 et 8, Hermann, Paris (1975).
- [2] V. G. Kac, V. L. Popov and É. B. Vinberg: Sur les groupes linéaires algébriques dont l'algèbre des invariants est libre, C. R. Akad. Sci. Paris, 283, 875-878 (1976).
- [3] V. G. Kac: Root systems, representations of quivers and invariant theory. Lect. Notes in Math., No. 996, Springer, Berlin (1983).
- [4] M. Krämer: Eine Klassifikation bestimmter Untergruppen kompakter zusammenhängender Liegruppen. Comm. in Algebra, 3, 691-737 (1975).
- [5] —: Über Untergruppen kompakter Liegruppen als Isotropiegruppen bei linearen Aktionen. Math. Z., 147, 207-224 (1976).
- [6] D. Luna: Slices étales. Bull. Soc. Math. France Memoire, 33, 81-105 (1973).
- [7] —: Adhérences d'orbite et invariants. Invent. Math., 29, 231-238 (1975).
- [8] H. Nakajima: Rings of invariants of finite groups which are hypersurfaces, II. Tokyo Met. Univ. (1982) (to appear in Advances in Math.) (preprint).
- [9] —: Rings of invariants which are complete intersections. Kokyuroku (Proc. of RIMS Symp. "Algebraic Groups and Related Topics, Sept. 5-7, 1983"), RIMS of Kyoto Univ., Kyoto (1983).
- [10] G. W. Schwarz: Representations of simple Lie groups with regular rings of invariants. Invent. Math., 49, 167-191 (1978).
- [11] R. P. Stanley: Relative invariants of finite groups generated by pseudoreflections. J. Algebra, 49, 134-148 (1977).
- [12] V. L. Popov: Homological dimension of algebras of invariants. J. reine angew. Math., 341, 157-173 (1983).