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1. Introduction. Throughout this note, G will denote a reduc-
rive complex linear algebraic group. A representation of G is a finite
dimensional vector space V over the complex number field C together
with a morphism of algebraic groups 9 G--GL (V). We will consider

9 together with the representation space V and denote a representa-
tion as above by 9, by (9, G) or by 9(G). Let C[9] be the coordinate
ring of the affine space 9 on which G acts naturally and let C[9] be
the C-subalgebra consisting of all invariant polynomials in C[9] under
this action of G. (9, G) is said to be completely co-intersected (abbrev.
COCI) if C[9] (and so 9/G) is a complete intersection. Recall that
(9, G) is said to be coregular if C[9] is a polynomial ring over C. All
coregular representations of simple algebraic groups were determined
in [2, 10].

When Gx is closed in 9 for an element x in 9, the isotropy group

G is reductive, and we call the natural representation of G on

TxV/Tx(Gx) the slice representation at x, which is denoted by 9x-
Then 9/G-9/G is etale at the image of x in 9/G ([6]), and we easily
get

Lemma (1.1). Every slice representation of a COCI representa-
tion of G is COCI.

As any representation of G is completely reducible, [11, (5.2)]
implies

Lemma (1.2). Every subrepresentation of a COCI representa-
tion of G is COCI.

These lemmas are useful in studying COCI representations of re-
ductive groups.

2. Reductive groups of rank one. In this section, we suppose
that rank G--1. Let T be a maximal torus of G and :Hom (T, C*)-Z
a. fixed isomorphism. For a representation p of G, let p/ (resp. p-) be
the direct sum of all Pz with v(X)>0 (resp. v(X)<0), where Pz is the sub-
space of p of weight X e Hom (T, C*). Moreover, put qr(p)= min {dim
dim p-} and pr(p)=min {l{X pzve0, v(X)>0}l,

Theorem (2.1). Let p be a representation of G and suppose that
(p, G) is COCI. Then:
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(1) If G:/:T and qT(p)4, then qT(p)=4 and p/p is reducible as
a representation of G.

(2) If G= T and qr(p) >=4, then qr(p) <= 6, pr(p)= 1 and Ze(T)= G.
As a special case of (the proof)of (2.1), we have
Theorem (2.2). Let p be a representation of G such that Z(T)

is diagonalizable on p/p-. Suppose that (p, G) is COCI. Then:
(1) If qr(p)4, thenGT, qT(p)=4 and p/p is a reducible repre-

sentation of G.
(2) If G=Z(T), then qr(p)2.
Remark (2.:). When we use the slice method in Sect. 3, the as-

sumption on Z(T) in (2.2) is not essential. In act, finite principal
closed isotropy groups of some algebraic groups are abelian.

A version (e.g. [8]) of Grothendieck’s result on purity is useful in
showing (2.1).

:}o Applications. For representations , of G, we adopt the
ollowing notation: / (resp. k) denotes the direct sum of and
(resp. o k copies of ) and -- denotes the virtual representation in
the representation ring of G satisfying (;-+)/=. I G is con-
nected and and + are irreducible, stands or the irreducible com-
ponent of highest weight in ?(R). If H is a subgroup of G, ((G), H)
denotes the restriction of to H.

Hereafter let G be a simple, connected and simply connected alge-
braic group of rank r and let ,,..-, denote the basic irreducible
representations of G whose ordering is defined in [1]. We confuse G
with its Dynkin diagram. If 7:H-G, (, G) is identified with (?, H)
(note D--A3).

Theorem (:.1). Let be a nontrivial irreducible representation

vf G. If (, G) is COCI and not coregular, then (, G) or its dual can
be identified with one of (A1), (A1), (A3) and 1.(A3).

Corollary (:.2). Let be a representation of G which does not
contain a nonzero trivial subrepresentation. If (, G) is COCI and
there is a non-coregular irreducible subrepresentation of , then is
irreducible.

Proof. If rank G=I, this is obvious (cf. (2.2)), and otherwise the
assertion easily ollows rom (3.1) (cf. (1.1)).

Example (3.3) ([3]). (An) is COCI if and only if (i, n) equals to
one of (1, n), (2, n), (3, 1), (4, 1), (5, 1), (6, 1), (3, 2) and (3, 3). This is
.a direct consequence of (1.1) and classical invariant theory.

The next theorem, in which it is not necessary to assume that G
is simple, follows immediately from (1.1), (2.1) and [7].

Theorem (3.4). Let be a representation of G and let T’ be a

maximal torus of a simple 3-dimensional subgroup G’ of G. Suppose
that
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(1) For some v e ’, N(T’)v is closed and (N(T’)/ T’), is finite.
(2) The conclusions of (2.1) are not satisfied for p, T= T’ and

G=Gv. Here p=-Ad(G) if G=T’, and otherwise p=--Ad(G)
+Ad (Gv).
Then (, G) is not COCI.

Using (2.2), we can weaken the co.ndition (2) in (3.4) (cf. (2.3)), but
(3.4) is sufficient for showing (3.1).

Sketch of the proo of (3.1). Let be an irreducible representa-
tion of G which is not listed in (3.1). By (2.2) and (3.3) we may assume
r_2 and (, G)g:(, An). Because (, G) is not coregular, there is a
maximal torus T’ of a simple 3-dimensional subgroup G’ of G satisfy-
ing (1) in (3.4) and qr,(-Ad (G))3 (cf. [10, (5.2)]). Moreover such a
torus is effectively listed in [10, 5]. Thus using [4, 5] and tensor
decompositions in [10], we can estimate qr,(e-Ad (G)), which implies
that almost all ’s are not COCI (cf. (3.4)). (Sometimes, one needs to
study the decomposition of ((G), N(G’)).) If necessary, we further-
more compute G and p,(-Ad (G)), and consequently (3.1) follows.

Example (3.5). Let T’=C*c G’=AcG=An where ((A), A),
k(A)+1, m= k+ 1, k+ 2 or k+ 3. Then =(An) (n 8) satisfies

(1) of (3.4). The inequality qr,(--Ad (G))>_7 is shown as follows" For
simplicity, suppose n=9. Because (A)=(A)+2(A), ((A),G’).
contains (G’)+12(G’)+26(G’). Thus qr,(f--Ad (G))40-qr,(9
(G’) / 24(G’)) >: 7.

Example(3.6). Let T’=C*cG’--CcG=C and = where

((C), C)= 2(C). Then (1) o (3.4) is satisfied. Since ((G), G’) con-
tains (G’)+2(G’)+2(G’) and (Ad(G), G’)=3(G’)+I, we have

qr,(-- Ad (G)) 6 and p,(--Ad (G)) 3, which shows that (C) is not
COCI.

Example (3.7). For exceptional groups G, using the acts stated
in [10, p. 189, 190], we can easily examine the conditions in (3.4).
Especially if G is o type E, our assertion is almost trivial. Let
T’=C*G’=A G=G where ((G), G’)=2(G’)+I. Clearly
(Ad (G), G’)=(G’)+4(G’)+I. By the identity ((G), AA)
=(A?))((A))+(A?)), ((G), G’) 3(G’)+ 8(G;). Thus p,(
--Ad (G2))>2 and qr,(-Ad (G0)6, which implies our assertion for

=(G).
Theorem (3.8). For each coregular irreducible representation

(, G), we can effectively give a number n such that (n, G)is not
COCI.

Example (3.9). (m, A) (n2) is COCI if and only if mn+2.
Remark (3.10) ([9]). For a fixed G, up to outer automrphisms

and additions of trivial representations, there are only finite many



224 H. NAKAJIMA [Vol. 60 (A),

COCI representations. This follows from (1.2), (3.2) and (3.8).
Since the syzygies of C[9] are constructive, in principle, we can

determine COCI representations of G.
Example (3.11) ([9]). Let 9 be a representation of A1 which

does not contain nonzero trivial subrepresentation. Then (9, A,) is
COCI if and only if

291 +9,
When the author was starting the study of COCI representations,

he was inspired by the results in [I0, 12]. The contents of this note
were partly reported in [9] with some additional facts.
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