25. Iterated Log Type Strong Limit Theorems for Self-Similar Processes

By Norio Kôno

Institute of Mathematics, Yoshida College, Kyoto University (Communicated by Kôsaku Yosida, M. J. A., March 12, 1983)

1. Let $\{X(t,\omega); 0 \le t < +\infty\}$ be a real valued separable, measurable, stochastically continuous self-similar process of order H>0, where "self-similar process" means that for any a>0, $\{X(t)\}$ and $\{a^{-H}X(at)\}$ have the same finite dimensional distribution. We will denote it by $X(t) \stackrel{d}{=} a^{-H}X(at)$. Set

$$Y(\omega) = \sup_{0 \le t \le 1} |X(t, \omega)|.$$

Theorem 1. Let f(x) be a positive, continuous, non-decreasing function defined on the positive half line. Assume that E[f(Y)] is finite. Let $\phi(x)$ be a positive, continuous function defined on the positive half line which satisfies the following conditions;

- (i) $\phi(x)$ is non-decreasing,
- (ii) $\lim_{x \downarrow 1} \sup_{n=1,2,\dots} \phi(x^n)/\phi(x^{n-1}) = c < +\infty$,

and

(iii)
$$\int_{-\infty}^{+\infty} (x f(\phi(x)))^{-1} dx < +\infty.$$

Then, we have

$$\overline{\lim_{s \to +\infty}} \frac{|X(s,\omega)|}{s^H \phi(s)} \le c$$
 a.s.

Theorem 2. Let g(x) be a positive, continuous, non-increasing function defined on the positive half line. Assume that E[g(Y)] is finite. Let $\psi(x)$ be a positive, continuous function defined on the positive half line which satisfies the following conditions;

(i) $\psi(x)$ is non-increasing, and

(ii)
$$\int_{-\infty}^{+\infty} (xg(\psi(x)))^{-1} dx < +\infty.$$

Then, we have

$$\lim_{s \to +\infty} rac{\sup_{0 \le t \le s} |X(t,\omega)|}{s^H \psi(s)} \ge 1$$
 a.s.

2. First, we prove the following

Lemma 1. If $E[f(Y)] = K < +\infty$, then for x > 0, we have

$$P\left(\sup_{0 \leq t \leq \lambda} |X(t,\omega)| \geq x\right) \leq K/f(\lambda^{-H}x).$$

Proof. By self-similarity, we have

$$\sup_{0 \le t \le \lambda} |X(t, \omega)| \stackrel{d}{=} \lambda^H Y(\omega).$$

Therefore, by Chebyshev's inequality,

$$P\left(\sup_{0 \leq t \leq \lambda} |X(t,\omega)| \geq x\right) = P(Y(\omega) \geq \lambda^{-H}x) \leq K/f(\lambda^{-H}x).$$

Proof of Theorem 1. Set $x_n = \xi^{nH} \phi(\xi^n)$ for $\xi > 1$ and

$$A_n = \Big\{ \omega ; \sup_{0 \le t \le \xi^n} |X(t, \omega)| \ge x_n \Big\}.$$

Then, by Lemma 1, we have

$$p(A_n) \leq K/f(\phi(\xi^n)),$$

and

$$\sum^{\infty} P(A_n) \leq C \int_{-\infty}^{+\infty} (x f(\phi(x)))^{-1} dx < +\infty.$$

By Borel-Cantelli lemma, there exists $n_0(\omega) < +\infty$ with probability 1 such that

$$\sup_{0\leq t\leq \xi^n}|X(t,\omega)|{\leq}\xi^{nH}\phi(\xi^n)$$

holds for all $n \ge n_0(\omega)$. Finally, by our assumption for ϕ , we have

$$\frac{|X(s,\omega)|}{s^{H}\phi(s)} \leq \frac{\xi^{nH}\phi(\xi^{n})}{\xi^{(n-1)H}\phi(\xi^{n-1})}$$

for $n \ge n_0(\omega)$ and $\xi^{n-1} \le s \le \xi^n$. This concludes that

$$\overline{\lim_{s \to \infty}} \frac{|X(s, \omega)|}{s^H \phi(s)} \le c$$
 a.s. Q.E.D.

The proof for Theorem 2 is the same line as that of Theorem 1.

Lemma 2. If $E[g(Y)] = K' < +\infty$, then for x > 0 we have

$$P\left(\sup_{0 \le t \le \lambda} |X(t,\omega)| \le x\right) \le K'/g(\lambda^{-H}x).$$

Proof of Theorem 2. Set $y_n = \xi^{nH} \psi(\xi^n)$ and

$$B_n = \left\{ \omega ; \sup_{0 \le t \le \xi^n} |X(t, \omega)| \le \xi^{nH} \psi(\xi^n) \right\}.$$

Then, by Lemma 2, we have

$$P(B_n) \leq K'/g(\psi(\xi^n)),$$

and

$$\sum^{\infty} P(B_n) \leq C' \int_{-\infty}^{+\infty} (xg(\psi(x)))^{-1} dx < +\infty.$$

By Borel-Cantelli lemma, there exists $n_1(\omega) < +\infty$ with probability 1 such that

$$\frac{\sup_{0 \leq t \leq s} |X(t,\omega)|}{s^H \psi(s)} \geq \frac{\sup_{0 \leq t \leq \xi^n} |X(t,\omega)|}{\xi^{(n+1)H} \psi(\xi^n)} \geq \xi^{-H}$$

holds for $\xi^n \leq s \leq \xi^{n+1}$. It follows that

$$\underline{\lim_{s \to +\infty}} \frac{\sup_{0 \le t \le s} |X(t, \omega)|}{s^H \psi(s)} \ge 1 \quad \text{a.s.} \quad Q.E.D.$$

3. We can give some examples which are applicable to our theo-

rems; though, results themselves are known ([2]). Let $\{X(t,\omega); 0 \le t < +\infty\}$ be a centered path continuous Gaussian self-similar process of order H>0 with $E[X(t)^2]=1$. Then, by the theorem due to Fernique [1, Theorem 1.3.3], we have

$$E[e^{(1-\epsilon)Y^2/2}] < +\infty$$

for $\varepsilon > 0$. Therefore, setting $\phi(x) = \sqrt{(2+\delta) \log \log (x+e)}$, we have

$$\int^{^{+\infty}} x^{^{-1}} e^{^{-(1-\varepsilon)(2+\delta)2^{-1}\log\log x}} dx < +\infty \qquad \text{for } \delta > 2\varepsilon (1-\varepsilon)^{^{-1}}.$$

Applying Theorem 1, we have

$$\overline{\lim_{s \to +\infty}} \frac{|X(s,\omega)|}{s^H \sqrt{2 \log \log s}} \leq 1 \quad \text{a.s.}$$

To apply Theorem 2, let us consider a narrower class than the previous example. Let $\{X(t,\omega)\}$ be a path continuous Gaussian process with the covariance

$$E[X(t)X(s)] = (|t|^{2H} + |s|^{2H} - |t-s|^{2H})/2$$

for 0 < H < 1/2. Then, by [2], we have

$$P(Y \le y) \le c_1 e^{-c_2 y^{-1/H}}$$
.

This follows that $E[g(y)] < +\infty$ for $g(x) = \exp\{(c_2 - \varepsilon)x^{-1/H}\}$, $\varepsilon > 0$. Therefore, setting $\psi(x) = (c_2 - 2\varepsilon)^H (\log \log x)^{-H}$ we have

$$\int_{-\infty}^{+\infty} (xg(\psi(x)))^{-1} dx < +\infty.$$

Applying Theorem 2, we have

$$\lim_{s o +\infty} rac{(\log \log s)^H \sup_{0 \leq t \leq s} |X(t,\omega)|}{s^H} \! \geq \! c_2^H, \qquad ext{a.s.}$$

References

- [1] Fernique, X.: Regularité des trajéctoires des fonctions aléatoires gaussiennes. Lect. Note in Math., vol. 480, Springer (1975).
- [2] Kôno, N.: Evolution asymptotique des temps d'arrêt et des temps de séjour liés aux trajectoires de certaines fonctions aléatoires gaussiennes. Proc. of the Third Japan-USSR Symposium on Probability Theory. ibid., vol. 550, Springer, pp. 290-296 (1976).