97. On v-Ideals in a VHC Order*)

By Hidetoshi MARUBAYASHI College of General Education, Osaka University (Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1983)

Throughout this note, Q will be a simple artinian ring and R will be an order in Q with 1. Let $\underline{C}(\underline{C'})$ be a right (left) Gabriel topology on R cogenerated by the right (left) injective hull of Q/R. In [4], Ris called a VH (v-hereditary) order if for any R-ideal A such that $_vA$ = A ($A_v = A$) we have $_v(A(R:A)_t) = O_t(A)$ (resp. $((R:A)_rA)_v = O_r(A)$). We say that R is a VHC order if it is a VH order satisfying the maximum condition on \underline{C} -closed right ideals and $\underline{C'}$ -closed left ideals. The concept of VHC orders is a Krull type generalization of HNP (hereditary noetherian prime) rings. The aim of this note is to extend Robson's theorems and Fujita-Nishida's theorems in HNP rings to the case of VHC orders (cf. [1], [7] and [3]). Concerning our terminology and notations we refer to [4]. See [6] for many interesting examples of VHC orders.

Proposition 1. The following two conditions are equivalent:

(1) $_{v}(A(R:A)_{i})=O_{i}(A)$ for any R-ideal A such that $_{v}A=A$.

(2) $_{v}(A(R:A)_{i}) = _{v}(O_{i}(A))$ for any *R*-ideal A.

Proof. (2)⇒(1) is clear, because $_v(O_i(A)) = O_i(A)$ for any *R*-ideal *A* with $_vA = A$. (1)⇒(2): Since $_vA \supset A$, we have $1 \in O_i(_vA) = _v(_vA(R: _vA)_i)$ $\subset_v(_vA(R:A)_i) = _v(A(R:A)_i)$ by Lemma 1.1 of [4]. It is clear that $A(R:A)_i \subset O_i(A)$ and so $_v(A(R:A)_i) \subset _v(O_i(A))$. On the other hand, $A(R:A)_i$ is an $(O_i(A), O_i(A))$ -bimodule and thus $_v(A(R:A)_i)$ is a right $O_i(A)$ -module. Hence it follows that $O_i(A) \subset _v(A(R:A)_i)$ and that $_v(O_i(A)) \subset _v(A(R:A)_i)$.

From now on, R will be a VHC order in a simple artinian ring Q. Lemma 1. Let A be any R-ideal. Then ${}_{v}A = A_{v}$.

Proof. This is proved as in Lemma 1.2 of [4] by using Proposition 1.

We consider the following sets of v-ideals of $R: V(R) = \{A : \text{ideal of } R \mid A : v \text{-ideal}\} \supset V_m(R) = \{A \in V(R) \mid A \subset P : \text{ prime } v \text{-ideal} \Rightarrow P : \text{maximal } v \text{-ideal}\}$. If R has enough v-invertible ideals, then $V(R) = V_m(R)$ by Lemma 1.2 of [5]. We do not have an example of VHC order in which $V(R) \supseteq V_m(R)$ up to now. We study the properties of ideals belonging to $V_m(R)$.

^{*)} Dedicated to Prof. Kentaro Murata for his 60th birthday.

Proposition 2. (1) If $A, B \in V_m(R)$, then $AB \in V_m(R)$.

(2) Let A and B be elements in V(R) such that $A \subseteq B$. If $A \in V_m(R)$, then $B \in V_m(R)$.

(3) If $A \in V_m(R)$, then Ass(R/A) consists of maximal v-ideals of R.

(4) Let X be any v-invertible ideal of R. Then $X \in V_m(R)$.

(5) Let A be any element in V(R). Then $A \in V_m(R)$ if and only if there are maximal v-ideals M_1, \dots, M_n satisfying $M_1 \dots M_n \subset A \subset M_i$ for any $i=1, \dots, n$.

Proof. (1), (2) and (3) are trivial. (4): As in Propositions 2.10 and 2.11 of [4], we have $R = \cap R_P \cap S(R)$, where R_P is an HNP ring whose Jacobson radical $P' = PR_P = R_P P$ is a unique maximal invertible ideal of R_P (P ranges over all maximal v-invertible ideals of R), $S = S(R) = \bigcup Y^{-1}$ (Y runs over all v-invertible ideals of R), and $(XS)_v = S$ $= (SX)_v$. Now let A be a prime v-ideal containing X. Then we have $A = \cap AR_P \cap (AS)_v = \cap AR_P \cap S$. There are only a finite number of maximal v-invertible ideals P_1, \dots, P_n of R such that $R_{P_i} \supseteq AR_{P_i}$ ($1 \le i$ $\le n$) and so $A = A_1 \cap \dots \cap A_n$ ($A_i = AR_{P_i} \cap R$). Since A is a prime ideal, we have $A = A_i$ for some i and so AR_{P_i} is also a prime ideal. Write $P_i = M_1 \cap \dots \cap M_k$, an intersection of a cycle, where M_j are maximal v-ideals of R. Then $\{M_j R_{P_i} | 1 \le j \le k\}$ are only prime ideals of R_{P_i} (see Proposition 2.7 of [4]). Thus $AR_{P_i} = M_j R_{P_i}$ for some j and $A = AR_{P_i}$ $\cap R = M_j$, a maximal v-ideal of R. Since R satisfies a.c.c. on v-ideals of R, (5) easily follows (see the proof of Lemma 1.2 of [8]).

Proposition 3. (1) Let A be any element in $V_m(R)$. Then $A = (XB)_v$ for some v-invertible ideal X of R and eventually v-idempotent ideal $B \in V_m(R)$.

(2) Let C be an eventually v-idempotent ideal in $V_m(R)$ and let M_1, \dots, M_n be the full set of maximal v-ideals containing C. Then $(C^n)_v = ((M_1 \cap \dots \cap M_n)^n)_v$ and is v-idempotent.

Proof. (1) As in Theorem 4.2 of [1]. (2) follows from the proof of Proposition 1.4 of [6].

Lemma 2. Let M_1 and M_2 be any maximal v-ideals of R such that $O_r(M_i) \neq O_l(M_j)$ for all $i, j \ (1 \leq i, j \leq 2)$ and let $A = M_1 \cap M_2$. Then $A = (M_1M_2)_v = (M_2M_1)_v$ and is v-idempotent.

Proof. First we note that $A \in V_m(R)$. Assume that A is not *v*-idempotent. Then, by Lemma 1.3 of [6], we have $R \supseteq (A(R:A)_r)_v \supseteq A$ and $R \supseteq ((R:A)_l A)_v \supseteq A$, because $((R:A)_l A)_v$ and $(A(R:A)_r)_v$ are both *v*-idempotent. So we may assume that $((R:A)_l A)_v = M_1$ by Propositions 2 and 3, and then $A = (M_2 M_1)_v$ by Lemma 1.3 of [6]. Thus we have $O_r(A) = O_r(M_1)$. Assume that $M_1 = (A(R:A)_r)_v$. Then $O_l(M_1) \supseteq O_l(A) \supseteq O_l(M_2)$ and so $M_1 \subseteq M_2$. This is a contradiction. Hence M_2

 $=(A(R:A)_r)_v$. Now assume that $W = O_r(M_1) \cap O_l(M_2) \supseteq R$. Then $R \supseteq (R:W)_r \supset (R:O_l(M_2))_r = M_2$ and so $(R:W)_r = M_2$. Similarly, we have $(R:W)_l = M_1$. Thus $O_r(M_1) = W_v = _v W = O_l(M_2)$ by Lemma 1. This is a contradiction. Hence $O_r(M_1) \cap O_l(M_2) = R$. On the other hand, since $(A^2)_v$ is v-idempotent by Lemma 1.3 of [6], we have $K = O_r((A^2)_v) \cap O_l((A^2)_v) \supseteq R$ by the same method as in Lemma 1.7 of [6]. The inclusions $(A^2)_v \subset (R:K)_l \subseteq R$ imply that $(R:K)_l$ is contained in a maximal v-ideal of R, say M_1 . Then $K_v = _v K \supset O_r(M_1) \supseteq R$. This entails that $O_r(M_1)$ is a v-ideal. So it follows from Lemma 1.7 of [2] that there exists a v-idempotent ideal N containing $(A^2)_v$ such that $O_r(M_1) = O_l(N)$. Since $O_r(M_1)$ is minimal in the set of all overrings of R which are v-ideals, N must be a maximal v-ideal of R and thus $N = M_2$, which is a contradiction. Therefore A must be v-idempotent.

Distinct v-idempotent, maximal v-ideals M_1, \dots, M_n are called an open cycle if $O_r(M_1) = O_l(M_2), \dots, O_r(M_{n-1}) = O_l(M_n)$ but $O_r(M_n) \neq O_l(M_1)$. The following proposition is due to Fujita and Nishida if R is an HNP ring which is obtained in a similar way to prove Theorem 1.3 of [3] by using Lemma 1.3 of [6], Propositions 2, 3 and Lemma 2.

Proposition 4. Let M_1, \dots, M_n be an open cycle and let $A = M_1$ $\cap \dots \cap M_n$. Then

- (1) $(A(R:A)_r)_v = M_1 \text{ and } ((R:A)_l A)_v = M_n.$
- (2) $A = (M_1 \cdots M_n)_v.$

(3) $(AM_i)_v = (M_{i+1}A)_v$ for $i=1, \dots, n-1$.

(4) $(A^{i}((R : A)_{r})^{i})_{v} = (M_{i} \cdots M_{1})_{v}$ and $(((R : A)_{l})^{i}A^{i})_{v} = (M_{n} \cdots M_{n-i+1})_{v}$. $M_{n-i+1})_{v}$. In particular, $(A^{n})_{v} = (A^{n}((R : A)_{r})^{n})_{v} = (((R : A)_{l})^{n}A^{n})_{v}$ $= (M_{n} \cdots M_{1})_{v}$.

(5) $A \supseteq (A^2)_v \supseteq \cdots \supseteq (A^n)_v = (A^{n+1})_v = \cdots$

Let M_1, \dots, M_m and N_1, \dots, N_n be distinct *v*-idempotent, maximal *v*-ideals of *R*. Then, following [3], M_1, \dots, M_m and $N_1, \dots N_n$ are separated if $O_r(M_i) \neq O_i(N_j)$ and $O_r(N_j) \neq O_i(M_i)$ for all $i=1, \dots, m$ and $j=1, \dots, n$. Proposition 3 allows us to study *v*-invertible ideals and eventually *v*-idempotent ideals separately. The structure of *v*-invertible ideals was completely determined in [4] (see Theorem 1.13 of [4]). To study eventually *v*-idempotent ideals of *R*, let M_1, \dots, M_n be a finite set of distinct *v*-idempotent, maximal *v*-ideals of *R* such that $A = M_1 \cap \dots \cap M_n$ is not contained in any *v*-invertible ideals of *R* (see Proposition 3). Then we classify it as follows;

(a) $\{M_1, \dots, M_n\} = \bigcup_{i=1}^k \{M_{i1}, \dots, M_{in(i)}\}\$, and each of $M_{i1}, \dots, M_{in(i)}\$ is an open cycle.

(b) $M_{i1}, \dots, M_{in(i)}$ and $M_{j1}, \dots, M_{jn(j)}$ are separated for any i, j $(i \neq j)$. Put $A_i = M_{i1} \cap \dots \cap M_{in(i)}$. Then we have

Proposition 5. With the above notations and assumption we

have $A = (A_1 \cdots A_k)_v$ and $(A_i A_j)_v = (A_j A_i)_v$ (cf. [3]).

Proof. By Proposition 4, $A_i = (M_{i1} \cdots M_{in(i)})_v$ and so $(A_iA_j)_v = (A_jA_i)_v$ by Lemma 2. We shall prove $A = (A_1 \cdots A_k)_v$ by induction on k. If k=1, then there is nothing to prove. So we may assume that $B = A_1 \cap \cdots \cap A_{k-1} = (A_1 \cdots A_{k-1})_v$. Then $(BA_k)_v = (A_kB)_v$ by Lemma 2 and $(B + A_k)_v = R$. Thus $A = B \cap A_k = ((B \cap A_k)(B + A_k)_v)_v \subset (BA_k)_v + (A_kB)_v = (BA_k)_v = (A_1 \cdots A_k)_v$ and therefore $A = (A_1 \cdots A_k)_v$.

The next proposition is due to Robson in case R is an HNP ring (see [7]) and the author obtained the proposition if R is a VHC order with enough *v*-invertible ideals (see [6]).

Proposition 6. Let M_1, \dots, M_n be maximal v-ideals of R and let $A = M_1 \cap \dots \cap M_n$. Then A is v-idempotent if and only if $O_r(M_i) \neq O_i(M_i)$ for any i, j.

Proof. Assume that A is v-idempotent and that $O_r(M_i) = O_i(M_j)$ for some i, j. If i=j, then M_i is v-invertible and so $A \subset \bigcap_{n=1}^{\infty} (M_i^n)_v$ = O, a contradiction. Hence $i \neq j$. Let $A = (A_1 \cdots A_k)_v$ be the decomposition of A as in Proposition 5. Then there exists A_i , say A_1 , such that $A_1 = M_{11} \cap \cdots \cap M_{1n(1)}$ with $n(1) \ge 2$. Then we have, by Proposition 4, $_v(M_{1n(1)}A_2 \cdots A_k) = _v((R:A_1)_i A_1 A_2 \cdots A_k) = _v((R:A_1)_i A_1^2 A_2^2 \cdots A_k^2)$ $= _v(M_{1n(1)}A_1 A_2^2 \cdots A_k^2) \subset M_{11}$, which is a contradiction. Hence $O_r(M_i)$ $\neq O_i(M_j)$ for all i, j. We prove the sufficiency by induction on n (see Lemma 2 in case n=2). So we may assume that $B = M_1 \cap \cdots \cap M_{n-1}$ $= ((M_1 \cdots M_{n-1})_v)$ is v-idempotent and $(B+M_n)_v = R$. Thus $A = B \cap M_n$ $= ((B \cap M_n)(B+M_n)_v)_v \subset ((BM_n)_v + (M_nB)_v)_v = (M_1 \cdots M_n)_v$ by Lemma 2. Hence $A = (M_1 \cdots M_n)_v$ and is v-idempotent, because $(M_iM_j)_v = (M_jM_i)_v$.

References

- [1] D. Eisenbud and J. C. Robson: Hereditary noetherian prime rings. J. Algebra, 16, 86-104 (1970).
- [2] H. Fujita: A generalization of Krull orders (preprint).
- [3] H. Fujita and K. Nishida: Ideals of hereditary noetherian prime rings. Hokkaido Math. J., 11, 286-294 (1982).
- [4] H. Marubayashi: A Krull type generalization of HNP rings with enough invertible ideals. Comm. in Algebra, 11, 469-499 (1983).
- [5] —: Remarks on VHC orders in a simple artinian ring (to appear in Lect. Notes in Math., Springer-Verlag).
- [6] ——: A skew polynomial ring over a v-HC order with enough v-invertible ideals (to appear in Comm. in Algebra).
- [7] J. C. Robson: Idealizers and hereditary noetherian prime rings. J. Algebra, 22, 45-81 (1972).
- [8] P. F. Smith: Rings with enough invertible ideals. Can. J. Math., 35, 131– 144 (1983).