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1. Introduction. Let R be a commutative integral domairt
with quotient field K. For nonzero fractional ideals I and J, we define
I: J-{x e R; xJcI}. We will denote {x e K xlcR} by 1-1, and (I-1) -by I. We will say that I is a divisorial ideal or v-ideal if I-I,. I is
a v-ideal of finite type if I=J, for some finitely generated fractional
ideal J. By a graded domain R=r R,, we mean an integral domain
R graded by an arbitrary torsionless grading monoid F, i.e., a com--
mutative cancellative monoid, written additively, such that the quo-
tient group (F} generated by F is a torsion-free abelian group. (A
general reference on torsionless grading monoids and F-graded rings
is [5].) For a fractional ideal I of a F-graded integral domain
R=,er R,, I* will denote the ractional ideal generated by the homo-
geneous elements of I. Let x e R, with x=x+x.+... +x, where x.
e R,, and =/= for i=/=]. We then define the content of x, denoted.
by C(x), to be (x, x, ..., x). One of the most important examples of
a F-graded integral domain is the semigroup ring R[X;F]. Here
R[X F] =R[{X g e F}] with XX=X/. R[X I’J is F-graded in.
the natural way with deg (X)=g. In [1], D. D. Anderson-D. F.
Anderson studied v-ideals and invertible ideals of a F-graded domain.
R. Specifically in 3 they gave necessary and sufficient conditions
for an integral v-ideal of R to be homogeneous whenever it contains
a nonzero homogeneous element, proving the following result.

Theorem ([1], Theorem 3.2). Let R=@,r R, be a graded inte-
gral domain and suppose S={nonzero homogeneous elements of R}
The following statements are equivalent.

(1) For r e S and x e R, (r) (x) is homogeneous.
(2) If I is an int,egral v-ideal of R with nonzero I*, then I is-

homogeneous.
(3) If I is an integral v-ideal of R of finite type with nonzero I*,

then I is homogeneous.
(4) C(xy)v= (C($)C(y))v for all nonzero x, y e R.
(5) For each nonzero x eR, xRsfqR=xC(x) -1.
(6) If I is an integral v-ideal of R of finite type, then I=qJ for

some q e Rs and some homogeneous integral v-ideal J of R of finite
type.
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They asked in [1] if in (6) it is necessary to assume that I is of
finite type. In this paper we show that this is actually necessary for
an infinite number of graded integral domains which we should
construct.

Let A be a commutative ring, and let/" be a commutative can-
cellative monoid. In Appendix we give a necessary and sufficient
condition for semigroup ring A[X; F] to be a Noetherian ring.

2. ]xamples. Let D be a domain of characteristic p0, and
let F be an additive subgroup of the real numbers R containing
{1/19, 1/(p), 1/(p), .}. We denote the group ring D[X;F] by R
throughout the section.

Lemma 1. Let {d(1), d(2), d(3), ...} and {n(1), n(2), n(3), ...} be
two sequences of natural numbers (___1). Set f= 1-I?- (1-X()/’’)
for each natural number n. Suppose that (1) d(1)d(2)d(3). .,
and (2) n(i)p for each natural number i. Then the ideal f7= (f) of
R is not zero.

Proof. Let k and be natural numbers such that kl. We set
e (/9-1) and set

e(k,/) =p>->+p>--’> +.
Then we have
( ) e(l, l)

_
(pa()-a()+

_
1) / (p- 1).

Since 1-X/’"= (1-X/’’)’’-’’’, we have

1-I (1-x/’’’) (1-x/’"),
Since 1-X(/’’’ divides 1-X/’’’ in R, [I ,=, (1-X/’’’) divides
(1-X/’’"),. By (.) we see that (1-X/’"), divides 1-X/’’-’.
Therefore f, divides 1-X/’’’’-’. Hence 1--X/’’"-’e 7= (f,).

Let f=a,X’+a.X*+ +aX be a nonzero element of R, where
0 yea, e D for each i and a, <a.<. <a=. We set a, ord (f) (resp. a
=deg (f)), and call it She order (resp. degree) of f.

Lemma 2. In Lemma 1, suppose that (7= (f,) is a principal ideal
(f) of R. Then we have f =/=0 and

n(i)/pa(*)=deg (f)- ord (f).
i=l

Proof. By Lemma 1 we have f=/=0. We may assume that the
order of f is zero. We set deg (f)=d. Since f e (fz) for each l, we
have

n(1)/pa +n(2)/pa( +... +n(1) /paZ _d.
(1 X(’/’’’) dividesIt follows that

__
n(i)/p(*) Gd. Since ]-I,--

(l--Xe/(’)e(’) in the proof of Lemma 1, we see that f divides
(*) (1--X’(’)/’")(1--X’()/’’). ..(I_X’(-’)/-’)(1-X/’’)(,).
Hence f divides (.). It follows that

dGn(1)/p( +n(2)/p( +. +n(k- 1)/p(- + ee(k, 1)/p().
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By (,) of the proof of Lemma 1, we have
d<_n(1)/p() +n(2)/p’(z +... +n(k--1)/p(-)+ep(/(p 1).

It follows that

d.<_ n(i) / p().
i=l

We see that ,7: n(i)/p()=d.
Lemma 3. Suppose that D is a field. Then R satisfies six con-

ditions of Theorem of 1.

Proof. Let reS, and let xeR. r is a unit element of R. It
follows that (r)’(x)=R. Therefore R satisfies the condition (1) of
Theorem.

Lemma 4. Suppose that GR. Then there exist two sequences
{d(1), d(2), d(3), ...} and {n(1), n(2), n(3), } of natural numbers such
that (1) {d(1), d(2), d(3), ...} (resp. {n(1), n(2), n(3), ...}) satisfies the
condition (1) (resp. (2)) of Lemma 1, and (2) = n(i)/p() e R--G.

Proof. Since l/peG, we have GZ. We choose a eR-G.
Since GZ, we may take 0al. The p-adic expression of a gives
desired sequences of natural numbers.

Lemma 5. In Lemma 4, we set f= [I (1-X()/(’) for each
n. Then the ideal (.= (f) of R is not principal.

Proof. Suppose that=(f) is a principal ideal (f). By Lemma
2 we have f:/:0 and=n(i)/p()=deg (f)-ord (f). Since deg (f) e G
and ord (f) e G, it follows 7=n(i)/p() e G. This contradicts to the
condition (2) of Lemma 4.

Lemma 6 ([4], Corollary 3.1). Suppose that D is a field and that
G is contained in the additive group of rational numbers. Then R is
a Bezout domain (that is, each finitely generated ideal of R is a prin-
cipal ideal).

3. Main theorem. Now we can answer to Anderson-Anderson
problem by the following theorem.

Theorem. There exists an infinite number of graded integral

domains R such that (1) R is a group ring, (2)R satisfies six conditions

of Theorem of 1, (3) There exists an integral v-ideal I of R which is

never of the form qJ, where q e R and J is a homogeneous integral

v-ideal of R of finite type.

Proof. We take a group ring R of Lemma 6. By Lemma 3, R
satisfies the condition (2). We take a pair of sequences

{d(1), d(2), d(3), ...} and {n(1), n(2), n(3), ...}
o Lemma 4. We set f,= I-I’= (1-X’()/(’) for each n and set I

=f7=l (f). Then I is an integral v-ideal of R([2], 1, nl). Suppose
that I is of the form qJ for some q e Rs and some homogeneous inte-

gral v-ideal J of R of finite type. Since S consists of unit elements of

R, I is a finitely generated ideal of R. By Lemma 6, we see that I is
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a principal ideal of R. This coatradicts to Lemma 5.
4. Appendix. Let A be a commutative ring with identity, and

let F be a commutative cancellative monoid. (We note that F is not
necessarily torsion-free.) If F is a group., I. Connell ([3], Theorem 2,
(c)) proved that A[X;F] is a Noetherian ring if and only if A is a
Noetherian ring and F is a finitely generated group. We prove now
the following result which applies also to the case where F is not a
group.

Theorem. A[X;F] is a Noetherian ring, if and only if A is a
Noetherian ring and 1" is a finitely generated monoid.

Proof. Assume that A[X;F] is a Noetherian ring. Then A is
clearly a Noetherian ring. A chain of ideals in F gives a chain of
ideals in A[X;F]. Hence F has the ascending chain condition on
ideals. Since F is also cancellative, every element is a sum of irre-
ducible elements. If c, c, c, are irreducible elements of F, then

ZocZoc+Zoc.Zoc+Zoc+Zoc... is a chain o ideals in F where
Z0 is the nonnegative integers hence all c are in some Zoc+Zoc+
+ZoCn. As F is cancellative, each c is a unit times some one of
c, c, ..., Ca. Thus there are only finitely many irreducible elements
uptounits. LetHbe the group of units of F. If J is an ideal of
A[X HI, then J+A[X F-HI is an ideal in A[X F]. Hence A[X H]
is a Noetherian ring. By the result of Connell, H is a finitely gen-
erated group. Therefore F is a finitely generated monoid. The
sufficiency is clear.
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