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§1. Introduction. Let R be a commutative integral domain
with quotient field K. For nonzero fractional ideals I and J, we define
I:J={xeR;aJCI}. We will denote {xre K; xICR} by I-!,and (I-")"!
by I,. We will say that I is a divisorial ideal or v-ideal if I=1,. 1is
a v-ideal of finite type if I=J, for some finitely generated fractional
ideal /. By a graded domain R=®,.r R,, we mean an integral domain
R graded by an arbitrary torsionless grading monoid I, i.e., a com-
mutative cancellative monoid, written additively, such that the quo-
tient group <I") generated by I'" is a torsion-free abelian group. (A
general reference on torsionless grading monoids and I'-graded rings
is [5].) For a fractional ideal I of a I'-graded integral domain
R=®,.r R., I* will denote the fractional ideal generated by the homo-
geneous elements of I. Let x ¢ R, with x=2,4+2,+ - - - +2,, where z,
eR,, and a,#a, for i+=j. We then define the content of x, denoted
by C(x), to be (x;, @, - - -, £,). One of the most important examples of
a I'-graded integral domain is the semigroup ring R[X;I']. Here
R[X; '=R[{X*; g I'}]] with X°X"=X"**, R[X; '] is I'-graded in
the natural way with deg (X%)=g. In [1], D. D. Anderson-D. F.
Anderson studied v-ideals and invertible ideals of a I'-graded domain
R. Specifically in §3 they gave necessary and sufficient conditions
for an integral v-ideal of R to be homogeneous whenever it contains
a nonzero homogeneous element, proving the following result.

Theorem ([1], Theorem 8.2), Let R=®,.r R, be a graded inte-
gral domain and suppose S={nonzero homogeneous elements of R}=+d.
The following statements are equivalent.

1) ForreSand xeR, (r): (x) is homogeneous.

Q) If I is an integral v-ideal of R with nonzero I*, then I is
homogeneous.

) If I is an integral v-ideal of R of finite type with nonzero I*,
then I is homogeneous.

@ C(y),=(C@CW®)), for all nonzero x,yc R.

(B5) For each nonzero x ¢ R, tRgNR=xC(x)"".

®) If I is an integral v-ideal of R of finite type, then I=qJ for
some q e Ry and some homogeneous integral v-ideal J of R of finite
type.
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They asked in [1] if in (6) it is necessary to assume that I is of
finite type. In this paper we show that this is actually necessary for
an infinite number of graded integral domains which we should
construct.

Let A be a commutative ring, and let I" be a commutative can-
cellative monoid. In Appendix we give a necessary and sufficient
condition for semigroup ring A[X ; I'] to be a Noetherian ring.

§2. Examples. Let D be a domain of characteristic p>0, and
let I' be an additive subgroup of the real numbers R containing
{1/p, 1/®», 1/®°, ---}. We denote the group ring D[X;I'] by R
throughout the section.

Lemma 1. Let {dQ1),d(2),d(d), ---} and {nQd),n(2),n@d), ---} de
two sequences of natural numbers (>1). Set f,=[][?., 1—X" /")
for each natural number n. Suppose that (1) d(1)<d@)<dB)<:--,
and (2) n(@)<p for each natural number i. Then the ideal N, (f,) of
R s not zero.

Proof. Let k and I be natural numbers such that k<<Il. We set
e=(p—1)! and set

e(k’ l)=pd(l)—d(l)+pd(l)-—d(l-—l)+ e +pd(l)~d(k).
Then we have
(%) e(k, D<(p*®@-2®*1—-1)/(p—1).
Since 1— X7 = (1 — X«»*®)p*=%" "we have
lL[ (l_Xe/pdm)=(1__Xe/pd(u)e(k,z).

i=k
Since 1—X*@/»*? divides 1—X“**" in R, [[!., A —X"®/#*") divides
(1—Xeré)e - By (x) we see that (1—X/?*P)e®D divides 1— Xe/?*® 2,
Therefore f, divides 1—X¢?**~*, Hence 1—X****"* ¢ N, (f)-

Let f=a,X“+a,X*+ ... +a,X* be a nonzero element of R, where
0+#a,e D for each ¢t and o, <, < - - - <a,. We set oy,=ord (f) (resp. «,
=deg (1)), and call it the order (resp. degree) of f.

Lemma 2. In Lemma 1, suppose that (M, (f) is a principal ideal
(f) of R. Then we have f+0 and

iZ; n(@)/p*® =deg (f)—ord (f).

Proof. By Lemma 1 we have f0. We may assume that the
order of f is zero. We set deg (f)=d. Since f e (f,) for each I, we
have

n()/p?*®+n@2)/p*® 4+ - - +nl)/p*P <d.
It follows that D2, n()/p*®<d. Since [[i.,(1—X""**") divides
(1— Xep¥yesd) in the proof of Lemma 1, we see that f, divides
(%) (1= Xr@rpsoy(]— Xr@ms®), . (] — Xnk-/pt*=0)( _ Xe/pd@yeD,
Hence f divides (x). It follows that
d<n)/p*®+n@2)/p*®+ - - - +n(k—1)/p** " +ee(k, ) [ p*®.
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By () of the proof of Lemma 1, we have
d<nQ)/p*P+n@)/p*®@+ - - - +n(k—1)/p**-D4ep'¢* [(p—1).
It follows that

A< ni) /pto.
i=1

We see that > 2, n(@)/p??=d.

Lemma 3. Suppose that D is o field. Then R satisfies six con-
ditions of Theorem of §1.

Proof. Let re S, and let xe R. r is a unit element of R. It
follows that (r): (x)=R. Therefore R satisfies the condition (1) of
Theorem.

Lemma 4. Suppose that GC R. Then there exist two sequences
{dQ), d2), d(3), - - -} and {n(), n(2), n3), - - -} of natural numbers such
that (1) {d(1), d@2), d(3), - - -} (resp. {n(), n(@2), n(3), ---}) satisfies the
condition (1) (resp. (2)) of Lemma 1, and (2) > 2, n@)/p*® e R—G.

Proof. Since 1/pe G, we have GDZ. We choose ae R—G.
Since GDZ, we may take 0<<a<1l. The p-adic expression of « gives
desired sequences of natural numbers.

Lemma 5. In Lemma 4, we set f,=[]t., A—X"0/**") for each
n. Then the ideal M, (f) of R is not principal.

Proof. Suppose that (i, (f)) is a principal ideal (f). By Lemma
2 we have f#0and > 2, n@@)/p*®=deg (f)—ord (f). Sincedeg(f)eG
and ord (f) e G, it follows > 7, n(@)/p*® e G. This contradicts to the
condition (2) of Lemma 4.

Lemma 6 ([4], Corollary 3.1). Suppose that D is a field and that
@G is contained in the additive group of rational numbers. Then R is
a Bezout domain (that is, each finitely generated ideal of R is a prin-
cipal ideal).

§ 3. Main theorem. Now we can answer to Anderson-Anderson
problem by the following theorem.

Theorem. There exists an infinite number of graded integral
domains R such that (1) R is a group ring, (2) R satisfies stz conditions
of Theorem of §1, (8) There exists an integral v-ideal I of R which is
never of the form qJ, where qe Rs and J is a homogeneous integral
v-ideal of R of finite type.

Proof. We take a group ring R of Lemma 6. By Lemma 3, R
satisfies the condition (2). We take a pair of sequences

{dD), d(2),d3), ---} and {n(), n(2),n@d), ---}
of Lemma 4. We set f,=[][", 1—=X"®/?*") for each n and set I
==, (f). Then I is an integral v-ideal of R([2], § 1, n°1). Suppose
that I is of the form ¢J for some ¢ ¢ Ry and some homogeneous inte-
gral v-ideal J of R of finite type. Since S consists of unit elements of
R, I is a finitely generated ideal of R. By Lemma 6, we see that I is



202 R. MATSuUDA [Vol. 59(A),

a principal ideal of R. This contradicts to Lemma 5.

§4. Appendix. Let A be a commutative ring with identity, and
let I be a commutative cancellative monoid. (We note that I" is not
necessarily torsion-free.) If I" is a group, I. Connell ([3], Theorem 2,
(¢)) proved that A[X;I'] is a Noetherian ring if and only if 4 is a
Noetherian ring and I" is a finitely generated group. We prove now
the following result which applies also to the case where I" is not a
group.

Theorem. A[X;I']is a Noetherian ring, if and only if A is a
Noetherian ring and I' is o finitely generated monoid.

Proof. Assume that A[X ;'] is a Noetherian ring. Then A is
clearly a Noetherian ring. A chain of ideals in I" gives a chain of
ideals in A[X;I']. Hence I' has the ascending chain condition on
ideals. Since I" is also cancellative, every element is a sum of irre-
ducible elements. If ¢, ¢, ¢, - - - are irreducible elements of I', then
Zyc,C L2y, CZoye,+Zoc,+Zyc,C - - - i8 a chain of ideals in I” where
Z, is the nonnegative integers; hence all ¢, are in some Z,¢,+Z,C,+ - - -
+Z,c,. As I' is cancellative, each ¢, is a unit times some one of
Cyy Coy ++ +, €.  Thus there are only finitely many irreducible elements
up to units. Let H be the group of units of I". If J is an ideal of
A[X; H], then J+ A[X ; I'— H] is anidealin A[X ; I']. Hence A[X ; H]
is a Noetherian ring. By the result of Connell, H is a finitely gen-

erated group. Therefore I is a finitely generated monoid. The
sufficiency is clear.
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