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1. Introduction. It is well-known that outside the L? setting
many major aspects of classical analysis cannot be treated by the
projection-valued measures in abstract spectral theory. However, the
notions of well-bounded operator and spectral family (introduced in
[11, [2]) afford an approach to abstract operator theory using Riemann-
Stieltjes integrals and divorced from vector measures. Recently in [1]
the scope of these notions has been considerably expanded. In par-
ticular, [1, Theorem (4.20)] (see (2.1) below) affords an abstract
operator-theoretic rationale for Fourier inversion in classical reflexive
L7 gpaces [1, (4.47)]. In a forthcoming paper [2] (outlined in this
note) we show that the foregoing circle of ideas can be applied to
complex analysis. Our main result is that every strongly continuous
one-parameter group of isometries on H?(D), where D is the open unit
dise in C and 1<p<oo, has a spectral decomposition as in the conclu-
sion of the generalized Stone’s theorem (see (3.1) below). One iso-
metric group, the parabolic group {V{®} in Theorem (3.4) below, is of
special interest. Its spectral family corresponds to the M. Riesz
projections restricted to H?(R) (R is the real line). The spectral family
of {V®} is concretely described in (8.6) below. A pleasant by-product
of the parabolic case is the incorporation of a key ingredient of the
Paley-Wiener theorem for 1<p<2 into the abstract framework of
the generalized Stone’s theorem (see (3.5) below). For a condensed
account of the general theory of well-bounded operators and spectral
families see [1, §2].

2. Abstract preliminaries. Definition. A spectral family in a
Banach space X is a projection-valued function E(-): R—3B(X) such
that: (i) E(.) is uniformly bounded, monotone increasing, and strongly
right continuous on R; (ii) E(-) has a strong left-hand limit at each
point of R; and (iii) E(Q)—0 (resp., E(2)—I) strongly as 2—— oo (resp.,
A— 4+ o).

(2.1) Generalized Stone’s theorem ([1, Theorem (4.20)]). Let
{T} be a strongly continuous one-parameter group of operators on the
Banach space X with infinitesimal generator S. Suppose that: (a) for
each te R, T,=e', where A, is a well-bounded operator of type (B)
whose spectrum, a(4,), is contained in [0,2x]; and (b) sup {|E.(D|: 1,4
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€ R}< o0, where E () is the spectral family of A,., Then:
(i) Thereis a unique spectral family £(-) in X (called the Stone-
type spectral family of {T.}) such that
T,x=lim ‘ et dEQ)x forteR, xeX.

a—+w J -a

(ii) The commutants of {T,:t € R} and {£(2): 2 € R} are equal.
(iii) The domain of S, D(S), equals
{x eX: lim [ 2dEQ)x em’sts},

a—+o J —a

and
S@=ilim [ dewe  for x e D(S).

Remark. It is not difficult to see that {T,} must be uniformly
bounded, and ¢(S) is pure-imaginary.

(2.2) Theorem ([2, Theorem (4.4)]). If, in addition to the hy-
potheses of Theorem (2.1), a(S)={ia: 2<0}, then EQ)=1 for 2>0.

The proof of Theorem (2.1) in [1] gives a representation for &£(-).
This allows one to show the following in [2].

(2.3) Theorem. Suppose{T } satisfies the hypotheses of Theorem
(2.1), and M is a closed subspace of X invariant under {T}. Then M
is E(-)-invariant, and the group of restrictions {T,|M} satisfies the
hypotheses of Theorem (2.1) with Stone-type spectral family £(C-)| M.

3. Groups of isometries on reflexive Hardy spaces. (3.1) Main
Theorem. If {T} is a strongly continuous one-parameter group of
1sometries on X=H?(D), 1<p<oo, then conclusions (2.1) (i), (ii), and
(iii) hrold.

Sketch of Proof. We can assume p=+2. In view of [4, Theorem
(2.4)] and [3, Theorem (2.1)], the proof reduces to the following situa-
tions: {T'} is the translation group of L? of the circle T restricted to
H™(T) (elliptic case); or T,f=(4,)"*f(¢,), where {¢,}, t € R, is a certain
hyperbolic group of Mébius transformations of D or the parabolic
group {»,}, where

B.2) p(R)=[A—2-'t)z+27t]/(—i2 'tz +1+127'F).

All three cases can be treated by combining [5, Theorem 1] with The-
orem (2.3). We consider only the parabolic case here. Let W® be
the standard isometry of H?(/I*) onto H?(D), where II* is the right
half-plane. For fe H?(II*), we write 2® f for the boundary func-
tion of f. Then it is easy to see that in the parabolic case

@B.3) Q@[WWIT,WP[Q®] =" | H?(R), for t e R,
where {U?}, t € R, is the translation group on L*(R).

The parabolic case forms the subject matter of our remaining
considerations. For 1<p<oo (p=2 is no longer excluded), we let
E®(.) denote the Stone-type spectral family of {U®}. It is shown in
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[1, (4.47) (ii)] that for 2e R, E®™(2) is the M. Riesz projection for 2
(i.e., the multiplier operator on L?(R) corresponding to the charac-
teristic function of (—oo, 2]). Let E, (-)=E®(.)|H?(R). From (3.3)
we have the following theorem.

(3.4) Theorem. For1<p<co, let {V{®} be the group given by

Vief=m)"*f(p)  for teR, f e HYD).
Then F (), the Stone-type spectral family of {V{®}, is given by
F,Q=W®[QR®]'E Q¥ [W®]-1 for 2¢R.

One component of the Paley-Wiener theorem for 1<p<2 is that
for feH ?(R) f vanishes for almost all 2<0. This fact follows from
the next theorem.

(8.5) Theorem. Forl<p<oo, E,(A)=I for 2>0.

Sketch of Proof. For Re {>0, let I be the corresponding trans-
lation operator on H?(II*). Then {I{®} is a strongly continuous semi-
group of contraction operators on Re {>0, holomorphic on Re {>0.
Use [6, Theorem 17.9.2] and Theorem (2.2) to complete the proof.

We now give a concrete description of the family F,(-) in (3.4).

(8.6) Theorem. Let u denote the function 1+2)(1—2)*, and for
a>0 let &, denote the singular inner function exp (—ap). Suppose
1<p<co. Then F,(a)=I for a >0, and for a>0:

(i) F(—a)HXD)=¢,HD);

(ii) the null space of F,(—a) is the closed linear manifold in
H?(D) spanned by the following set of functions

{A—2)"7[£,(2)—11[2rina ™' — pu(2)] ' : =0, £1, £2, - - -}.

The proof of (3.6) (ii) is lengthy; its essence is to use a suitable
regularization argument on Fourier transforms to show that S, , is
dense in N, ,, where N, ,=ker E (—a), and

Spa=N,..N{f € H(R): f e C=(R) and support F<l0,al}.

Remarks. Let ®, be the M. Riesz projection of L*(T) on H*(T)
along HX(T), 1<p<oo. For a>0,let P,(—a)f =&, R, (E.f) for f ¢ HX(T),
and set P,(a)=1I for ¢>>0. Itisshown in [2, §6]that P,(-)is a spectral
family such that P,(—a)H?(D)=¢,H?(D) for a>0, but P,(-) equals
F,(.) if and only if p=2.
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