84. On Involutive Systems of Second Order of Codimension 2*)

By Keizo YAMAGUCHI

Department of Mathematics, Hokkaido University

(Communicated by Kunihiko Kodaira, M. J. A., Sept. 13, 1982)

In [1] and [2], E. Cartan obtained, among others, the following result (p. 2 [2]), for which he gave the proof in the case of 2 or 3 independent variables:

Tout système en involution de deux équations aux dérivées partielles du second ordre s'intègre par des équations différentielles ordinaires.

The purpose of this note is to give a precise statement of the above theorem and to describe methods of integration in the case of n independent variables $(n \ge 4)$. Details will be published elsewhere. In this note, we always assume the differentiability of class C^{∞} .

The author is grateful to Prof. M. Kuranishi for his interest in this work and valuable comments during the author's stay at Columbia University.

§ 1. Classification of symbols and the statement of Theorem. Let (M, N, p) be a fibred manifold of fibre dimension 1, where dim N = n and dim M = n + 1. Let $J^k(M, N, p)$ be the bundle of k-jets of local sections of (M, N, p) and C^k be the canonical differential system on $J^k(M, N, p)$.

Let R be an involutive system of second order which is locally defined by two equations, i.e., R is an involutive submanifold of $J^2(M,N,p)$ of codimension 2. Let x_0 be any point of R. Our problem is to find every local solution f of R passing through x_0 . More precisely, f is a section of (M,N,p) defined on a neighborhood U' of $z_0 = p_{-1}^2(x_0)$ such that $j_{z_0}^2(f) = x_0$ and $j^2(f)(U') \subset R$.

First we have

Proposition 1 (cf. p. 11 [2]). Let V be a vector space (over \mathbf{R} or \mathbf{C}) of dimension n. Let A be a subspace of $S^2(V^*)$ of codimension 2. Then A is involutive if and only if there exists a base $\{e_1, \dots, e_n\}$ of V such that the annihilator A^{\perp} of A in $S^2(V)$ is generated by $e_1 \otimes e_2$ and $e_1 \otimes e_3$, or $e_1 \otimes e_1$ and $e_1 \otimes e_2$.

Let $\mathbb{S}^2(V, W)$ be the contact algebra of second order of degree n (Definition 3.5 [3]). We now define involutive subalgebras \mathbb{S}^1 and \mathbb{S}^2 of $\mathbb{S}^2(V, W)$ of codimension 2 by putting

^{*)} Partially supported by Educational Projects for Japanese Mathematical Scientists.

From Proposition 1, it follows that $(R; D^1, D^2)$ is a PD manifold of second order of degree n satisfying $D^1 = \partial D^2$, where $D^1 = \partial C^2|_R$, $D^2 = C^2|_R$ and ∂D^2 is the derived system of D^2 (cf. § 4 [3]). Furthermore the symbol algebra $\mathcal{E}(x)$ of $(R; D^1, D^2)$ at $x \in R$ is isomorphic with \mathcal{E}^1 or \mathcal{E}^2 . Our regularity assumption is that R is regularly involutive, i.e., symbol algebras $\mathcal{E}(x)$ are mutually isomorphic for $x \in R$ (§ 5 [3]).

Now the main theorem can be stated as follows.

Theorem. Let R be an involutive system of $J^2(M, N, p)$ of codimension 2 ($n \ge 4$). Assume that R is regularly involutive on a neighborhood of $x_0 \in R$. Then every local solution of R passing through x_0 can be obtained by solving ordinary differential equations.

From now on, let R be a regularly involutive submanifold of $J^2(M, N, p)$ of codimension 2. Then (R, D^2) is a regular differential system of type \mathfrak{F}^1 or \mathfrak{F}^2 . In both cases, since $E = \langle e_1 \rangle$ is $G(\mathfrak{F}^i)$ -invariant, we can consider the first order covariant system N = N(E) of D^2 corresponding to E (see § 7 [3]).

§ 2. Structure equations. Let x_0 be any point of R. Then there exists a base $\{\pi, \pi_i, \omega_i, \pi_{ij} \ (1 \le i \le j \le n)\}$ of 1-forms on a neighborhood U of x_0 such that $D^2 = \{\pi = \pi_1 = \cdots = \pi_n = 0\}$ and that the following equalities hold (cf. Remark 6.7 (2) [3]);

$$\begin{cases} \mathrm{d}\pi \equiv \sum_{i=1}^n \omega_i \wedge \pi_i & \pmod{\pi}, \\ \mathrm{d}\pi_i \equiv \sum_{j=1}^n \omega_j \wedge \pi_{ij} & \pmod{\pi, \pi_1, \dots, \pi_n}, \end{cases}$$

where $\pi_{ij} = \pi_{ji}$ $(1 \le i, j \le n)$ and $\pi_{12} = \pi_{13} = 0$ (case of type 3^1) or $\pi_{11} = \pi_{12} = 0$ (case of type 3^2).

A base $\{\pi, \pi_i, \omega_i, \pi_{ij} \ (1 \le i \le j \le n)\}$ of 1-forms on U satisfying $D^2 = \{\pi = \pi_1 = \cdots = \pi_n = 0\}$ is called admissible if it satisfies the above equations. In both cases N is defined on U by π and π_1 . The structure equation of N is given as follows.

Lemma 1. If R is of type \mathfrak{F}^1 , there exists an admissible base of 1-forms on U such that the following equalities hold:

$$\left\{egin{aligned} &\mathrm{d}\pi\!\equiv\!\sum_{i=2}^n\omega_i\!\wedge\!\pi_i \pmod{\pi,\pi_1},\ &\mathrm{d}\pi_1\!\equiv\!\omega_1\!\wedge\!\pi_{11}\!+\!\sum_{lpha=4}^n\left(\omega_lpha\!+\!\sum_{eta=4}^nA_{lphaeta}\!\pi_eta
ight)\!\wedge\!\pi_{1lpha} \pmod{\pi_1}, \end{aligned}
ight.$$

where $A_{\alpha\beta}$ are functions on U such that $A_{\alpha\beta}+A_{\beta\alpha}=0$.

Lemma 2. If R is of type 3^2 , there exists an admissible base of 1-forms on U such that the following equalities hold:

$$\left\{egin{aligned} &\mathrm{d}\pi\!\equiv\!\sum_{i=2}^n\omega_i\!igwedge \pi_i & (\mathrm{mod}\ \pi,\pi_1),\ &\mathrm{d}\pi_1\!\equiv\!\sum_{lpha=3}^n\omega_lpha\!igwedge \pi_1lpha+B\omega_2\!igwedge \pi_3\!+\!C\pi_2\!igwedge \pi_{22} & (\mathrm{mod}\ \pi,\pi_1), \end{aligned}
ight.$$

where B and C are functions on U. Furthermore $B \cdot C = 0$ and C = 0 if $n \ge 4$.

By Lemma 1, we see that if R is of type \mathfrak{F}^1 , $N^* = \{\pi_1 = 0\}$ is a covariant system of N. Furthermore, from Lemmas 1 and 2, it follows that ν_x (Ch $(N)(x) \cap \text{Ch }(D^1)(x)$) = $\{a \in S^2(V^*) \mid v \perp a = 0 \text{ for } v \in E\}$ in both cases, where ν_x is an isomorphism of the symbol algebras $\mathfrak{F}(x)$ onto \mathfrak{F}^i .

§ 3. Reduction of (R, D^2) . For each $u \in J^1(M, N, p)$, let I_u be the set of all hyperplanes in $C^1(u)$. We now consider the (involutive) Grassmann bundle $I(\mathfrak{C}, 1)$ of codimension 1 over $\mathfrak{C} = (J^1(M, N, p), C^1)$:

$$I(\mathfrak{C},1) = \bigcup_{u \in J^1(M,N,p)} I_u.$$

Let φ be a map of R into $I(\mathfrak{C}, 1)$ defined by

$$\varphi(x) = \rho_*(N(x)),$$

where ρ is the projection of R onto $J^1(M, N, p)$. Then we see that φ is a map of constant rank and $\operatorname{Ker} \varphi_* = \operatorname{Ch}(N) \cap \operatorname{Ch}(D^1)$.

In the following we restrict our considerations in a neighborhood of $x_0 \in R$ so that we may assume that $W = \operatorname{Im} \varphi$ is a submanifold of $I(\mathfrak{C}, 1)$. Then φ is a submersion of R onto W satisfying $\rho = q \cdot \varphi$, where q is the projection of W onto $J^1(M, N, p)$. There are two differential systems C and \overline{N} on W such that $N = \varphi_*^{-1}(\overline{N})$ and $D^1 = \varphi_*^{-1}(C)$. Put $\psi(x_0) = \varphi_*(D^2(x_0)) \subset \overline{N}(w_0)$, $w_0 = \varphi(x_0)$. We say that S is a solution of W if S is an n-dimensional integral manifold of (W, \overline{N}) such that $T_w(S) \cap \operatorname{Ker} p_* = \{0\}$ at each $w \in S$. Now we have

Proposition 2. For a local solution f of R on a neighborhood U' of $z_0=p_{-1}^2(x_0)$ such that $j_{z_0}^2(f)=x_0$, $s=\varphi\circ j^2(f)(U')$ is a solution of W satisfying $T_{w_0}(S)\subset \psi(x_0)$.

Conversely, for a solution S of W satisfying $T_{w_0}(S) \subset \psi(x_0)$, there exists a local solution f of R such that $\varphi \circ j^2(f)(U')$ coincides with S around w_0 .

Thus our problem is reduced to that of finding every local solution S of W passing through w_0 such that $T_{w_0}(S) \subset \psi(x_0)$. One can also see that the local equivalence problem of (R, D^2) is reduced to that of $(W; C, \overline{N})$.

- § 4. Method of integration. 4.1. Case of type \hat{s}^1 . Since $\operatorname{Ker} \varphi_* = \operatorname{Ch}(N)$ and N^* is a covariant system of N, there exists a covariant system \overline{N}^* of \overline{N} such that $N^* = \varphi_*^{-1}(\overline{N}^*)$. Now the integration is carried out by the following two steps (1) and (2).
- (1) Find a maximal integral manifold Σ of (W, \overline{N}^*) such that $w_0 \in \Sigma$ and $T_{w_0}(\Sigma) \cap \operatorname{Ch}(C)(w_0) = \{0\}.$

Then dim $\Sigma = 2n$ and $q: \Sigma \to J^1(M, N, p)$ is an immersion around w_0 . Hence $\Sigma' = q(\Sigma)$ is a submanifold of $J^1(M, N, p)$ around $u_0 = p_1^2(x_0)$.

(2) Find a local solution f of the first order partial differential equation Σ such that $j_{z_0}^2(f) = x_0$.

Then f is a local solution of R. Conversely, every local solution f of R passing through x_0 can be obtained in this way.

- 4.2. Case of type \hat{s}^2 . Ch (\overline{N}) is a differential system of rank 1 such that $\operatorname{Ch}(\overline{N}) \cap \operatorname{Ch}(C) = \{0\}$. And we see that every local solution S of W satisfying $T_{w_0}(S) \subset \psi(x_0)$ is foliated by integral curves of $\operatorname{Ch}(\overline{N})$. Let H be a hypersurface in the base space N such that $z_0 = p_{-1}^2(x_0) \in H$ and $T_{z_0}(H) \cap (p_{-1}^2)_* (\operatorname{Ch}(N)(x_0)) = \{0\}$. Then $\hat{H} = (\mathfrak{p} \circ p_{-1}^1)^{-1}(H)$ is a hypersurface of W passing through w_0 which is transversal to $\operatorname{Ch}(\overline{N})$ around w_0 . Hence, for every solution S of W satisfying $T_{w_0}(S) \subset \psi(x_0)$, $S' = S \cap \hat{H}$ is an (n-1)-dimensional integral manifold of (W, \overline{N}) . We call S' an initial manifold of S. Thus our problem in this case is to find every initial manifold S' in \hat{H} passing through w_0 . Now the integration of S' is carried out by the following steps.
- (1) Find a maximal integral manifold Σ of (\hat{H}, \hat{C}) such that $w_0 \in \Sigma$ and $\overline{N}(w_0) \cap T_{w_0}(\Sigma) = \psi(x_0) \cap T_{w_0}(\hat{H})$, where $\hat{C} = C|_H$.

Then we see that dim $\Sigma = 2n-2$ and that $\hat{N} = \overline{N}|_{\Sigma}$ is a differential system of codimension 1 on Σ such that Ch (\hat{N}) is a subbundle of \hat{N} of codimension 2(n-2) around w_0 .

(2) Find a maximal integral manifold S' of (Σ, \hat{N}) such that $w_0 \in S'$ and $T_{w_0}(S') \subset Ch(C)(w_0) = \{0\}.$

Then S' is an initial manifold in \hat{H} . Conversely every initial manifold S' can be obtained in this way.

References

- [1] E. Cartan: Les systèmes de pfaff à cinq variables et les équations aux derivées partielles du second ordre. Ann. Sci. École Norm. Sup. (3), 27, 109-192 (1910).
- [2] —: Sur les systèmes en involution d'équations aux derivées partielles du second ordre à une fonction inconnue de trois variables indépendantes. Bull. Soc. Math. France, 39, 352-443 (1911).
- [3] K. Yamaguchi: Contact geometry of higher order. Japan. J. Math. (new series), 8(1), 109-176 (1982).