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77. Semigroups and Boundary Value Problems. II

By Kazuaki TAIRA
Institute of Mathematics, University of Tsukuba

(Communicated by K,Ssaku YOSIDA, M. J. A., Sept. 13, 1982)

1. Introduction. The purpose o this note is to extend our
earlier result [5] on the existence o Feller semigroups to a broader
class of degenerate elliptic operators.

Let D be a bounded domain in R with smooth boundary 3D and
let C(D) be the space of real-valued continuous unctions on D--D [2 3D.
A strongly continuous semigroup (Tt}t> Of. bounded linear operators
on C(D) is called a Feller semigroup on D if {Tt} satisfies"

f C(D), 0fl on DOTtf=l on D.
It is known that there corresponds to a Feller semigroup (Tt}t> on D
a strong Markov process on D and that i the pths o 2 are con-
tinuous, then the infinitesimal generator o {T} is described analyti-
cally as ollows (cf. [1], [6])"

i) Let x be a fixed point o.f the interior D of D. Fer a C-unc
tion u in the domain () o , we have
( 1 ) u(x) Au(x)

N N

a (x) u u+ (x) +
ij=l

where (a(x)) 0 and c(x) <= O.
ii) Let x’ be a fixed (regular) point o the boundary 3D o D and

choose a local coordinate x= (x, x, ..., x_, x) as x e D if x0 and
x e 3D i.f x= 0. For u e _q)(gA) C(D), we have

( 2 Lu(x’)- o(x’) 32u (x’)
N-1

fl 3u+
u (x’)--(x’)Au(x’)+ (x’)u(x’) +z(x’)

=0
where (a(x’)) >= 0, .(x’)=<0, p(x’)0, 3(x’)0 and n=(n,n,...n)is
the unit interior normal to 3D at x’. The conditien L is called a
Ventcel’s boundary condition.

In this note we consider the 2ollowing
Problem. Conversely, given analytic dta (A, L), can we con-

struct a Feller semigroup {T}_0 on D?
In [5], the author proved that, under the ellipticity condition on

N-1A, if a Markovin particle with generator L=,.__ a 3/3x3x goes
through the set M={x’ e 3D; p(x’)=0}, where no reflection phenome-
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non occurs, in finite time, then there exists a Feller semigroup {T}z0
on D whose infinitesimal generator 9 coincides with the minimal
closed extension in C(D) o2 the restriction o A to the space {u e C’(D)
Lu=O on D}.

The purpose of this note is to generalize this result to the case
when the operator A is non-elliptic.

2. Statement of result. For the differential operator A given
by (1), assume that there exists an open subset G of R, containing D,
such that the coefficients of A satisfy"

as e C(G) with aS=as and
N

E aiJ(X)ij O’ X e G, "(1’ , "", ) e R.(3) ,;:
b C(G).
c e C(G) with c(x) <= 0 in D.

Setting

p(x) dist (x, 3D) (x e D),
N N

b(x) a (x) 3p (x) +

_
b(x) 3p (x),

we divide the boundary aD into *our disjoint subsets (el. [3])"

2 x’ e 017 e(’)nn > 0
i,j=l

2 x’ e 017 (x’)n= O, b(z’) < 0
i,j=l

z’ e 017 , (x’)= O, b(z’) >0
i,j =1

20 x’ e OD a(x’)nn= O, b(x’)= 0
i,j=l

The undamental hypothesis concerning A is the ollowing
(H) each (i= 1, 2, 3) consists of a finite number of connected hyper-
surfaces.
Note that U coincides with the set o all regular points (cf. [4]).

For the Ventcel’s boundary condition L given by (2), assume that
the coefficients of L satisfy"

/1 a* are the components of a C symmetric contravariant
tensor of type (2, 0) on X UX and
N-1, (x’)>= 0, x’ e 2 U 2, ’ e T*,(& 2).
i,j=l(4) 2 fl e C(X U X).

3 . e C(2 U X) with ,(x’)
4 [ e C(2 U 2) with g(x’)>__ 0 on 27 U 2.
5 e C(X U X,) with/(x’)

To state hypotheses concerning L, we introduce some notation
and definitions.
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Following [2], we say that a tangent vector X=x- (3/3x) atj=l

x’ e X is subunit for L ,- cd(/xx) ifi,j=l

(1)2 N-1 N-1

a(x’), = dx e T,($).
kj= i,j= =

Fr x’e X, and p0, we define a "non-Euclidean ball" (o radius p
about x’) Bo(X’, p) to be the set of all points y’ e X which can be joined
to x’ by a Lipschitz path " [0, p]X or which (d/dt)(t) is a subunit
vector for L at (t) 2or almost every t. We denote by B(x’, p) an
ordinary Euclidean ball o radius p about x’.

The hypothesis concerning L on X is the following
(A.1) The operator A is elliptic’near X and there exist constants

0<gl and CO such that for suciently small pO we have
BAx’, p)B,(x’, C,p"), x’ e M= {x’ e 2 Z(x’) 0}.

The intuitive meaning of hypothesis (A.1) is that a Markovian particle
with generator L goes through the set M, where no reflection phe-
nomenon occurs, in finite time (c. [5], Remark 2.5).

In a neighborhood of X, we can write A uniquely in the orm"
A=Ao(O/On)+A(O/On)+A where A (]=0, 1, 2) is a differential oper-
ator o order ] acting along the parallel surfaces of X. Note that by
hypothesis (H) the restriction A] of A to X is a second order dff-
erential operator with non-positive principal symbol, and that0
and b<0 on X. Thus, or x’e X and p0, we can define a "non-
Euclidean ball" Bo_(,/o)(z) (x’, p) in the same manner as Bo(X’, p),
replacing X, and L by X and L-(/b)(Az) respectively.

The hypothesis concerning L on X is the ollowing
(A.2) There exist constants 0<el and CO such that for suf-

ficiently small p0 we have
B(x’, p)cBo_(,/o)(a)(x’, Cp’), x’ e X.

The intuitive meaning o hypothesis (A.2) is that a Markovian particle
with generator L--(/b)(A]z) diffuses everywhere in X in finite time.

The boundary condition L is said to be transversal on X X, ff
(x’) + 6(x’) >0 on X X,.

Now we can state the main result, which is a generalization of
Theorem 3 o [5].

Theorem. Let the differential operator A satisfy (3) and hypothe-
sis (H) and let the boundary condition L satisfy (4)and be transversal
on X X. Suppose that hypotheses (A.1), (A.2) are satisfied. Then
there exists a Feller semigroup {Tt}0 on D whose infinitesimal genera-
tor coincides with the minimal closed extension in C(D) of the restric-
tion of A to the space {u e C"(D) Lu=O on X X,}.. Idea of proof. Hypotheses (A.1), (A.2) imply that there
exists a strong Markov process on X X and the transversality of
L implies that is the "trace" on X UX of trajectories of a strong
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Markov process on D. On the other hand, the intuitive meaning of
hypothesis (H) is that Markovian particle with generator A (A-dif-
fusion) does not diffuse in D all the time, but it either dies or attains
the set X. [J X some time or other. Therefore we can "piece out"
with A-diffusion in D to construct strong Markov process : on D
and hence a Feller semigroup {Tt}t_o on D.

The details will be published elsewhere.
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