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A Uniqueness Result or the Semigroup Associated
with the Hamilton.Jacobi.Bellman Operator

By P. L. LIONS*) and Makiko NISIO**)

(Communicated by K,Ssaku Y0SD., M. . ., Sept. 13, 1982)

1. Introduction. We consider controlled diffusion processes of
the orm;

{dX(t)=a(X(t), v(t))dB + b(Z(t), v(t))dt( 1
iX(0)= x e R

where B is an n-dimensional Brownian motion in some probability
space (/2, F, F, P), equipped with a filtration satisfying the usual con-
ditions, a(x, v)(resp, b(x, v)) is an N n matrix-valued (resp. N-vector-
valued) unction on R V and V is a separable metric space. Precise
assumptions on a, b will be made later on.

The control v is any progressively measurable process with respect
to F taking its value in a compact subset of V. We introduce a cost
function of the orm"

i (i )(2) J(x, t, , v(.))=E f(X(s), v(s)) exp c(X(2), v(2))d2 ds

+ (X(t))exp (--: c(X(s), v(s))ds)
where f(x, v), c(x, v) and (x) are real vMued functions.

We will always assume: ]C0 such that

( 3 ) tD;IIL(,)_C, Vv e V, V]a]2, V=a, b, f, c.
[(x,v) is continuous in v, Vx e R, V=a, b, f, c.

( 4 ) e X=BUC(R)= {v e C(R), v is uniformly continuous on R}.
Finally we set
( 5 ) J(x, t, )= inf J(x, t, , v(. ))

v(-)

where the infinimum is taken over all controls v(.) defined above. We
also denote by (So(t))(x)=J(x, t, ).

Then, we know (see A. Bensoussan-J. L. Lions [2], N. V. Krylov
[6], M. Nisio [11])that the mathematical ormulation o the dynamic
programming principle is the ollowing

i) So(t) is a semigroup on X.
In addition, one knows that So satisfies:

ii) J(x, t,) eBUC(R[O, T]) (VToo) (or in other words So(.)
is strongly continuous),
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iii) So(t)So(t), if

_
in R, (vt_0),

iv) IlSo(t)-So(t)ll(,)-e- -11(.’) where 20=inf{c(x, v)
x e R, v e V}, and

v) If , De, D e X then (1/t)(S(t)-) i0 in X,

uniformly for functions such that , De, D are equicontinuous,
where stands for the Hamilton-Jacobi-Bellman operator defined on
smooth functions by

=inf {A’(x)--f(x, v)}, for e C(R)
vV

and
1 a(x, v)ar(x, v).A= a(x, v)+ b(x, v)--c(x, v), a(x, v)=

Therefore, in some formal sense, So(t)(x)=u(x, t) is an integral
solution of the following Cauchy problem for Hamilton-Jacobi-Bellman
equation

(6) _3u_u_ =u inR(0,
3t

( 7 ) u(x, 0)= (x) in R.
In P. L. Lions [7], it is proved that if e W’(R), then u solves (6),
(7) in some appropriate sense.

Recently, one o2 us (M. Nisio [12]) investigated the uniqueness of
strongly continuous semigroup whose generator is an extension of the
operator (defined or example on C(R)). This question was solved
under appropriate assumptions, using general results concerning
abstract nonlinear semigroup theory (see P. Bnilan [1]) and the ex-
istence and uniqueness results on Hamilton-Jacobi-Bellman equations
(HJB in short) proved by P. L. Lions [7].

We propose here a direct answer to that question by using the
notion of viscosity solution o (6) introduced by M. G. Crandall and
P. L. Lions (see P. L. Lions [8], [9]), extending the notion introduced
in M. G. Crandall and P. L. Lions [4], [5] for first order Hamilton-
Jacobi equations. We recall the definition of such solutions in 2
below. The main eature of these solutions is shown by the following
result proved in P. L. Lions [8] (see also [9])

S0(t) is the unique viscosity solution of (6), (7) in BUC (R [0, T])

This will enable us to show the ollowing"
Theorem. Let (S(t))to be a strongly continuous semigroup on X

satisfying
(8) S(t)_S(t) in R, if

_
in R, vt0

(9) re, e , (1/t){S(t)[+ t]-}(x) -o+ 4X(x)+(x), Vx e R,
where )--{ e C(R), D e C(R), va}. Then,
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S(t) So(t), vt_>o.
Remarks. i) The above result should be viewed as an example

of application of the uniqueness of viscosity solution; in particular
similar results will hold for controlled diffusion with boundary con-
ditions, or for deterministic problems (differential games, etc.).

ii) It is clear that property (iv) of So implies that So satisfies (9).
iii) We do not know if the presence of in (9) is necessary. By

a simple modification of the proof below (remarking that by an
proximation argument one can take below (x, t) of the form (x)
+(t)) the result is still valid if we assume, instead of (9);
(9’) v e ., Vr e R, (1/t){S(t)(+tr)-}(x) or+(x), Vx e R".

In particular (9’) holds as soon as we have
lim 0 / (1 / t){S(t)(+ tr)-S(t)}()= r, v e , Vr R, Vx e R.
2. Proof of Theorem. Let us first recall one possible form of the

definition of viscosity solutions of (6) (see [3] [5]) u C(R (0, c)) is
said to be a viscosity solution of (6), if for all e C(R (0, c)) then
we have,

(10)

at any local maximum (Xo, to) of

/
vV

at any local minimum (Xo, to) of

In addition it is enough to check (10) at any global extremum (Xo, to) of

u- for e (R [0, )) (Xo e R, to0), see [3] [5] for related argu-
ments. Therefore, by the uniqueness result recalled in the introduc-
tion, it is enough to check that u(x, t)= (S(t))(x) is a viscosity solution
of (6) and thus we will consider, for example, a global maximum point
(Xo, to) e R (0, ) of u- where e (R [0, )). Let h (0, to),
since without loss of generality we may assume U(Xo, to)=(Xo, to), we
have by assumption (8)

(Xo, to)=U(Xo, to)= {S(h)u(to- h)}(Xo)g{S(h)(to- h)}(Xo)
where u(t)(.)=u(., t), (t)(.)=(., t). Now there exists (h))0 for
h e (0, to) such that

to-- h)<(x, to) h-- (x, to) + h(h) in R
3t

[(h) >0 as h0.

Next, let eo0, for h e (0, ho(o)) we have 0e(h)eo. Thus using again

(8), we deduce
(Xo, to)g S(h){(to) + h+}(Xo)

with =- (3/3t)(., to)+eo. Using now assumption (9), we obtain
dividing the above inequality by h and letting h0,
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We conclude, sending 0 to 0.
In the same way using the general uniqueness results o M. G.

Crandall and P.L. Lions [4], [5], we have the iollowing result on
general first order Hamilton-Jacobi equations;

Corollary. Let H C(RN). Then there exists a unique strongly
continuous semigroup S0(t) on X satisfying (8) and
(9") re, e , (1/t){So(t)(+t)--}(x)--->4(x)-H(D(x)), Vx e R,
and (So(t)Uo)(X) is the unique viscosity solution in BUC(R [0, T]) (or
all T c) o

-t
/H(Du)= 0 in R (0, c)

u(x, 0) =u0(x) in R.
Remarks. i) Using the general results o [4], [5], we could con-

sider as well general Hamiltonian H(x, t, s, p).
ii) These uniqueness results or semigroup are used in P.L.

Lions, G. Papanicolaou and S. R. S. Varadhan [10] in order to deter-
mine the limit of various asymptotic problems.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

El0]

[11]

[12]

References

P. Bnilan" Equation d’volution dans un espace de Banach quelconque et
applications. Thse d’Etat. Orsay (1972).

A. Bensoussan and J. L. Lions" Applications des inquations variation-
nelles en controle stochastique. Dunod (1978).

M. G. Crandall, L. C. Evans, and P. L. Lions: Some properties of viscosity
solutions of Hamiltonian-Jacobi equations (preprint).

M. G. Crandall and P. L. Lions: Conditions d’unicit pour les solutions
gnralises des quations de Hamilton-Jacobi du ’premier ordre. C. R.
Paris, 252, 183-186 (1981).
: Viscosity solutions of Hamilton-Jacobi equations (to appear in

Trans. Amer. Math. Soc.).
N. V. Krylov: Controlled diffusion processes. Appl. Math., 14, Springer

(1980) (translation from Russian).
P. L. Lions: Control of diffusion processes in RN. Comm. Pure Appl.
Math., 34, 121-147 (1981).
: Optimal control of diffusion processes and Hamilton-Jacobi-Bellman

equations (to appear).
----: Optimal stochastic control of diffusion type processes and Hamilton-
Jacobi-Bellman equations. Proc. Cocoyoc Conf. Ed. W. H. Fleming and
L. Gorostiza, Springer, Lect. Notes (to appear).

P. L. Lions, G. Papanicolaou, and S. R. S. Varadhan: Work in prepara-
tion.

M. Nisio: Stochastic Control Theory. ISI Lect. Notes 9, Macmillan, India
(1981).

----: Note on uniqueness of semigroup associated with Bellman operator.
Proc. Cocoyoc Conf. (ibid.).


