61. Integral Basis of the Field Q($\sqrt[n]{a}$)

By Kōsaku OKUTSU

Department of Mathematics, Gakushuin University

(Communicated by Shokichi IYANAGA, M. J. A., May 12, 1982)

In application of the theory exposed in our preceding notes [1], we give here explicitly an integral basis of the field $Q(\sqrt[n]{a})$, where $n, a \in \mathbb{Z}, n \ge 2, (n, a) = 1$. Some facts about the Newton diagram which are needed, will be first explained.

1. Newton diagram and irreducible factors of a polynomial. Let k be a complete discrete valuation field with exponential valuation v. For a monic polynomial $f(x) = x^n + a_1x + \cdots + a_n$ in k[x], we define the Newton diagram of f(x) as follows (cf. [2]). Put $m_i = v(a_i)$ ($i = 1, \dots, n$). We define inductively a sequence (i_0, i_1, \dots, i_t) which is a subset of $\{0, 1, \dots, n\}$, and a sequence of rational numbers $(\kappa_1, \dots, \kappa_t)$ as follows. Put $i_0 = 0$. Assuming i_s is already defined, we put

 $\kappa_{s+1} = \min \{ (m_h - m_{i_s}) / (h - i_s) | i_s < h \le n \}$

 $i_{s+1} = \max\{h \mid i_s < h \le n \text{ and } (m_h - m_{i_s})/(h - i_s) = \kappa_{s+1}\}.$

Then we have clearly $0=i_0< i_1< \cdots < i_t=n$, and $\kappa_1<\kappa_2< \cdots < \kappa_t$. We put $j_s=m_{i_s}$ $(s=1,\cdots,t)$.

Let P_0 be the point (0,0) and P_s the point (i_s,j_s) in the Cartesian plane $(s=1,\dots,t)$. The broken line consisting of t segments $P_{s-1}P_s$ $(s=1,\dots,t)$ will be called the Newton diagram of f(x), denoted N_f , the number t the order of N_f , and $(i_1,i_2,\dots,i_t;\kappa_1,\dots,\kappa_t)$ the index of N_f . Obviously N_f is "convex downward", all points (i,m_i) $(i=0,1,\dots,n)$ are lying "upper than" N_f , and N_f is the extremal curve with these properties in a well understood sense. It is clear that the order of the Newton diagram of a monic irreducible polynomial is one.

Lemma 1. Let f(x) be a monic polynomial in k[x] whose Newton diagram N_f has the index $(i_1, \dots, i_t; \kappa_1, \dots, \kappa_t)$, and g(x) be a monic polynomial in k[x] with the Newton diagram N_g with order one and the index $(l; \bar{\kappa})$. Then the order and the index of the Newton diagram N_g of the product of f(x) and g(x) are obtained as follows.

- i) When $\bar{\kappa} < \kappa_1$, N_{fg} has the order t+1 and the index $(l, i_1+l, i_2+l, \dots, i_t+l; \bar{\kappa}, \kappa_1, \dots, \kappa_t)$.
- ii) When $\bar{k} = \kappa_s$ for some s $(1 \le s \le t)$, N_{fg} has the order t and the index $(i_1, \dots, i_{s-1}, i_s + l, \dots, i_t + l; \kappa_1, \dots, \kappa_t)$.
- iii) When $\kappa_s < \bar{\kappa} < \kappa_{s+1}$ for some s (1 $\le s \le t$), N_{fg} has the order t+1, and the index $(i_1, \dots, i_s, i_s+l, \dots, i_t+l; \kappa_1, \dots, \kappa_s, \bar{\kappa}, \kappa_{s+1}, \dots, \kappa_t)$.
 - iv) When $\kappa_i < \bar{\kappa}$, N_{fg} has the order t+1, and the index $(i_1, \dots, i_t,$

 $i_t+l; \kappa_1, \cdots, \kappa_t, \bar{\kappa}).$

From this Lemma 1, we have immediately the following

Proposition 1. Let f(x) be a monic polynomial in k[x] whose Newton diagram N_f has the index $(i_1, \dots, i_t; \kappa_1, \dots, \kappa_t)$. Then f(x) is a product of t monic polynomials f_1, \dots, f_t in k[x] with order 1, the index of the Newton diagram N_{f_s} being $(i_s-i_{s-1}; \kappa_s)$.

Corollary. If $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n \in k[x]$ has the Newton diagram N_f of order 1 and $v(a_n)$ is relatively prime to n, then f(x) is irreducible. Especially f(x) is irreducible if f(x) is of Eisenstein type, i.e. if $v(a_i) \ge 1$ $(1 \le i \le n)$ and $v(a_n) = 1$.

2. Decomposition of $x^{p^m}-a$ over Q_p . Let p be a prime, m a natural number, and $a \in Z$, (a, p)=1. By means of the following lemma, which is easy to prove, we can obtain irreducible factors of $x^{p^m}-a$ in $Q_p[x]$.

Lemma 2. For any natural number $i < p^m$, we have $\operatorname{ord}_p(_{p^m}C_i) = m - \operatorname{ord}_p(i)$.

To decompose $f(x) = x^{p^m} - a$ in irreducible factors, we observe f(x) = F(x-a) where $F(x) = \sum_{i=1}^{p^m} p^m C_i a^{p^m-i} x^i + a^{p^m} - a$. Put $F_0(x) = F(x) - (a^{p^m} - a)$. The index $(i_1, i_2, \cdots; \kappa_1, \kappa_2, \cdots)$ of N_{F_0} is $(p^m - p^{m-1}, p^m - p^{m-2}, \cdots, p^m - 1, p^m; 1/\varphi(p^m), \cdots, 1/\varphi(p), \infty)$ where φ is the Euler function.

Now we calculate the index of N_F and obtain the irreducible factors of F(x). We put $r = \operatorname{ord}_{p}(a^{p^{m-1}} - 1)$.

- (i) If $r/p^m < \kappa_1$, we have r=1. In this case the index of N_F is $(p^m; 1/p^m)$, and F(x) is an Eisenstein polynomial. So F(x) is irreducible.
- (ii) If $\kappa_s \leq (r \operatorname{ord}_p(p^m C_{i_s}))/(p^m i_s) < \kappa_{s+1}$ for some s < t, we have s = r 1 > 0. When p is an odd prime,

$$\kappa_s < \frac{1}{p^{m-s}} = \frac{r - \operatorname{ord}_{p(p_m C_{i_s})}}{p^m - i_s}.$$

So the index of N_F is $(p^m-p^{m-1},\cdots,p^m-p^{m-r+1},p^m;1/\varphi(p^m),\cdots,1/\varphi(p^{m-r+2}),1/p^{m-r+1})$ and each corresponding factor is Eisenstein type. When p=2, $\kappa_s=1/2^{m-s}=(r-\operatorname{ord}_2(_{p^m}C_{i_s})/(2^m-i_s)$. So the index of N_F is $(2^{m-1},\cdots,2^m-2^{m-r+2},2^m;1/2^{m-1},\cdots,1/2^{m-r+2},1/2^{m-r+1})$. The first r-2 factors are of Eisenstein type. The last factor is not of Eisenstein type, but we can show that it is also irreducible.

- (iii) If $\kappa_m \leq (r \operatorname{ord}_p(p^m C_{i_s}))/(p^m i_m)$, then r > m. In this case the index of N_F is $(p^m p^{m-1}, \cdots, p^m 1, p^m; 1/\varphi(p^m), \cdots, 1/\varphi(p), r m)$, and F(x) is a product of m Eisenstein polynomials and a polynomial of degree 1.
- 3. Integral Basis of $Q(\sqrt[n]{a})$. Let, n, a be two rational integers such that $n \ge 2$, and (n, a) = 1. We assume that $f(x) = x^n a$ is irreduci-

ble in Z[x]. We shall calculate the integral basis of the field $Q(\sqrt[n]{a})$.

Now let p be a prime such that $m = \operatorname{ord}_p(n)$ is positive. Let us fix p for a while. Put $l = n/p^m$. By Hensel's lemma we have the irreducible decomposition $x^l - a = \prod_{j=1}^v H_j(x)$ in $Q_p[x]$ where $H_j(x)$ is irreducible modulo p, and $H_j(x)$ mod p and $H_k(x)$ mod p are prime to each other for any $k \neq j$. On the other hand, by the results of above section, we have the irreducible decomposition $(x+a)^{p^m} - a = \prod_{i=1}^u G_i(x)$ in $Q_p[x]$, where $r = \operatorname{ord}_p(a^{p^m-1}-1)$, $u = \min\{r, m+1\}$ when p is an odd prime, and $u = \min\{r-1, m+1\}$ when p = 2.

Proposition 2. The notations being the same as above, let $F_{ij}(x)$ be the greatest common divisor of $G_i(x^i-a)$ and $H_i(x^{p^m})$. In case $p\neq 2$, or p=2 and r>m+1, $F_{ij}(x)$ is an irreducible polynomial in $Q_{ij}[x]$ with degree $\varphi(p^{m-i+1}) \cdot \deg H_j(x)$ when i < u, and $p^{m-u+1} \cdot \deg H_j(x)$ when i = u. In case p=2 and $r \le m+1$, $F_{ij}(x)$ is irreducible in $Q_2[x]$, and has the degree $\varphi(2^{m-i+1}) \cdot \deg H_i(x)$ for $i \leq r-2$. As for $F_{r-1,i}(x)$ of degree $2^{m-r+1} \cdot \deg H_i(x)$, it is irreducible or decomposed into two irreducible factors of the same degree according as the following (a) or (b) takes place. Let γ be any root of $F_{r-1,j}(x)$, o be the valuation ring of $Q_2(\gamma)$, and \mathfrak{P} the maximal ideal of \mathfrak{o} . Let $\bar{\gamma}$ be the class of $\gamma \mod \mathfrak{P}$. $\bar{\gamma}$ may be considered as an element of the algebraic closure of the prime field $\mathbb{Z}/2\mathbb{Z}$, and $\mathbb{Z}/2\mathbb{Z}(\bar{\gamma})$ is a subfield of the residue field $\mathfrak{o}/\mathfrak{P}$. Now it is shown that $H_i(\gamma)^{2^{m-r}}/2 \in \mathfrak{o}$ and (a) means $H_i(\gamma)^{2^{m-r}}/2 \mod \mathfrak{P} \notin \mathbb{Z}/2\mathbb{Z}(\bar{\gamma})$, and (b) means $H_j(\gamma)^{2m-r}/2 \mod \mathfrak{P} \in \mathbb{Z}/2\mathbb{Z}(\overline{\gamma})$. If l>1, $H_j(x)$ and x are a first and a second (and last) primitive divisor polynomials of any irreducible factor of $F_{i,j}(x)$ for $1 \le i \le r-1$. If i=1, we have i=1 and $H_1(x) = x - a$ is a first (and last) primitive divisor polynomial.

Now let q be a prime such that $t=\operatorname{ord}_q(a)$ is positive, which we consider as fixed for a while. Put $a_0=a/q^i$, s=(n,t), $n_0=n/s$, $t_0=t/s$. Then by Hensel's lemma we have the irreducible decomposition $x^s-a_0=\prod_{i=1}^m \varPsi_i(x)$ where $\varPsi_i(x)$ is a monic polynomial in $\mathbf{Q}_q[x]$ such that $\varPsi_i(x)$ mod q is irreducible in $\mathbf{Z}/q\mathbf{Z}[x]$, and $\varPsi_j(x)\not\equiv\varPsi_i(x)$ mod q for any $j\neq i$.

Proposition 3. The notations being as above, put $\Phi_{j}(x) = q^{t_0 \deg \Psi_{j}} \Psi_{j}(x^{n_0}/q^{t_0})$. Then $\Phi_{j}(x)$ is a monic irreducible polynomial in $\mathbb{Z}_{q}[x]$, and so $x^n - a = \prod_{i=1}^m \Phi_{j}(x)$ is an irreducible decomposition in $\mathbb{Q}_{q}[x]$. Moreover x is a first (and last) primitive divisor polynomial of $\Phi_{j}(x)$ in $\mathbb{Q}_{q}[x]$ $(j=1,\dots,m)$.

In virtue of our Theorems 1, 2 in [1]-IV and above Propositions 2, 3 we obtain finally:

Theorem. Let n, a be two rational integers such that $n \ge 2$, (n, a) = 1, and suppose $f(x) = x^n - a$ is irreducible in $\mathbb{Z}[x]$. Let $\sqrt[n]{a}$ be one of the root of f(x) in \mathbb{C} . Let $n = \prod_{i=1}^k p_i^{s_i}$, $a = \prod_{j=1}^l q_j^{t_j}$ where p_i $(i=1, \dots, k)$, q_j $(j=1, \dots, l)$ are distinct primes. Put $n_i = n/p_i^{s_i}$

 $(i=1, \dots, k)$. Now put $g_0(x)=1$, and for any $m \in \{1, 2, \dots, n\}$, denote by $g_m(x)$ a monic polynomial in Z[x] satisfying

$$g_{\scriptscriptstyle m}(x) \equiv (x^{n_i} - a)^{\lceil m/n_i \rceil} x^{m - n_i \lceil m/n_i \rceil} \bmod p_i^{\lceil \lceil m/n_i \rceil \gamma_i \rceil + 1} \qquad (i = 1, \dots, k)$$

where

$$\gamma_i = egin{cases} rac{1}{p_i^{s_i}} & when \ \mathrm{ord}_{p_i} \left(a^{p_i^{s_i-1}} - 1
ight) = 1, \ rac{1}{arphi(p_i^{s_i})} & when \ \mathrm{ord}_{p_i} \left(a_i^{p^{s_i-1}} - 1
ight) > 1. \end{cases}$$

Then

$$\left\{\frac{g_m(a)}{\prod_{i=1}^k p_i^{\lceil t^m/n_i \rceil \rceil i} \prod_{i=1}^l q_i^{\lceil t^m j/n \rceil}} \middle| m = 0, 1, \dots, n-1\right\}$$

is an integral basis of $Q(\sqrt[n]{a})$.

Remark. Let n=p, $a=p^t\prod_{j=1}^vq_j^{i,j}$ where p, q_1,\dots,q_v are distinct primes, and t, t_1,\dots,t_v are rational integers such that $0 \le t < p$, $1 \le t_f < p$ $(j=1,\dots,v)$. By the similar method as above we have the following.

Put

$$\gamma = egin{cases} t/p & \text{when } r = 0 \ 1/p & \text{when } r = 1 \ 1/(p-1) & \text{when } r \geq 2 \end{cases}$$

where $r = \text{ord}_{p}(a^{p-1}-1)$.

Then $\{(\theta-a)^m/p^{\lceil m_T \rceil} \prod_{j=1}^v q_j^{\lceil mt_j/p \rceil} | m=0,1,\cdots,p-1\}$ is an integral basis of $Q(\sqrt[n]{a})$.

References

- [1] K. Okutsu: Construction of integral basis. I-IV. Proc. Japan Acad., 58A, 47-49; 87-89; 117-119; 167-169 (1982).
- [2] N. Koblitz: p-adic Numbers, p-adic Analysis, and Zeta Functions. Springer (1977).