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85. Class Number Calculation and Elliptic Unit. III

Sextic Case

By Ken NAKAMULA
Department of Mathematics, Tokyo Metropolitan University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1981)

In our preceding notes [2] and [3], we have introduced an effective
method to calculate the clags number of a certain cubic or quartic field
utilizing its elliptic unit. In the following, we shall treat the same
problem for a sextic field.

Let K be a real sextic number field which is not totally real and
which contains a (real) quadratic subfield K, and a cubic subfield K,.
Let D (>0), h and E, respectively be the discriminant, the class number
and the group of positive units of K. Further, let z, and %, be the class
numbers of K, and K, respectively. We shall give a way to compute
h/h,h, and E, at a time by using the “elliptic unit” of K.

§ 1. Illustration of algorithm. Let 7, and », be the fundamental
units (>1) of K, and K, respectively, and let H, be the group of posi-
tive units of K, i.e.

H,:={ceE |Ngyg(e)=Ngx (=1}
Then, as in [1], there is the relative fundamental unit ¢ (>1) in H,,
i.e. H,={¢), and ¢, generates £, together with two other independent
units. More precisely,

E, =&)X <&y X ey

with
( 1 ) &= i'/v_z’ &o’/vzilsl or 7,
(2) &=v1€  OF 75

Let 7 be the elliptic unit of K, of which the definition will be given in
§5. Then, applying the results in Schertz [5], we see that »>1 and
n € H,, and obtain the following formula :
(3) h/h2h3=(E+ : <51’ N2 773>)(H+ : <77>)/6
Therefore, the calculation of k/h,h, is reduced to the determination
of the group index (H.: {(y»)) and that of the units ¢, ¢;, The index
(H. :<{p)) is determined similarly as in [2] or [3] by using Theorems 1
and 2 below. The computation of ¢, and ¢, is explained in § 4.

§2. Upper bound of h/h,h,. The following lemma gives an up-
per bound of the index of a subgroup of H,.

Lemma 1. Let1<ee H, and D(e) be the discriminant of e. Then
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© <)D(e)<16<<s + %)7— 290)2.

It is easily seen that D>144% hence we have
Theorem 1. Let 1<eec H,, then

(H, : () <log (e)/log (Z/ /D/4)+ 290 — _f;_)

This theorem assures that our algorithm ends in a finite number
of steps. Especially, we obtain an explicit upper bound of %/h,k, on
account of (1), (2) and (3).

Corollary. Let y be the elliptic unit of K, then

h/hshy<log (7)/log (Z/ (vD/4)+ 290 — %)

§3. mn-th root of relative unit. For any element & of K such that

K= Q(S)’ let
X —s()X° 4 t(&) X* —u(&) X* +v(&) X* —w(&) X + x(&)

be the minimal polynomial of & over Q.

Let 1#£ee¢ H,, then K=Q(¢) and we have

we)=s(e)+2(s(e) —t(e)+1), v(e)=t(e), wle)=3(e), a(e)=1.

The following lemma, enables us to compute the minimal polynomial of
¢ from its approximate value.

Lemma 2. Notations being as above, let f=c+e"'. Then s(e) is
a rational integer such that |s(e)— ,B]<2«/ B+2 and that (s(e)*+ Bs(e)
—B+38+2)/(B+2) € Z, and t(e) is given by t(e)=(s(e)*+ p*s(e) — B+ 3P
+2)/(8+2).

For any rational integers s and ¢, put u=s*+2(s—t+2) and define
a recursive sequence r,=7,(s, t)(n=1,2, - - .) as follows :

r=8, r,=8r—2t, r,=sr,—tr,+3u, r,=sr,—tr,+ur,—4t,

ry=8r,—try+ur,—tr,+5s, r,=sr,—tr,+ur,—tr,+sr,—6,

V=8V 1=ty o+ U,y — T, 48T, _s—T,s  if BT
Then we have

Theorem 2. Let1+&eH, and ne N, Pute=%E(>0) and B=c¢
+e ', The real number ¢ belongs to K if and only if there exists a
rational integer s such that

|s—BI<2VB+2, 7.8, D)=5(8), 7.(8 t)=1(&).
Here t is the nearest rational integer to (s*+ fs— f+35+2)/(8+2),
Sy=t—8—3, to=7s(s, t)+1t,—3.
If s satisfies the above condition, then
s(e)=s and t(s)=t.

This theorem gives us an effective method to judge whether the
n-th root of & is also an element of H, or not. It only requires s(¢),
t(¢) and an approximate value of &.

§4. Determination of ¢, and ¢;. The fundamental unit 7, of K,
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is obtained explicitly as usual. The fundamental unit », of K, is
calculated by the method as in [2]. So we may assume that the mini-
mal polynomials and approximate values of 7, and 7, are known. Then,
after ¢, is determined by the results in the preceding two sections, we
can calculate the minimal polynomials of y;'e, and e, by a lemma
similar to Lemma 2’ of [3].

Put &=75e, and e=+ &. Then we can judge whether the real
number ¢ belongs to K or not, using approximate values of 7, and ¢,
together with s(&), t(&), u(¢), v(&), w(&), x(¢§). Namely, a proposition
similar to Proposition 8 of [3] holds, because s(&), £(&), u(¢), v(&), w(),
%(&) can be written explicitly as polynomials of s(e), t(e), u(e), v(e), w(e),
x(e) if ¢ belongs to K, and because the possible values of s(¢) and w(e)
are bounded explicitly by elementary functions of », and ¢;,, Moreover
s(e), te), ule), v(e), wle), x(e) are given during the test if ¢ belongs to K.
Therefore an effective method for the determination of ¢, is given.

Similarly we can judge whether ¥7;’, belongs to K or not, using
the minimal polynomial of ;' and approximate values of »,, ¢,, For
the determination of ¢,, we have the following proposition in addition.

Proposition 1. Let D, be the discriminant of K,, and let

X—yXi42X—1
be the minimal polynomial of 9, over Q. Put e= ¥ 7, (>0),

(i) If ¢ belongs to K, the quadratic field Q(v/D,D) contains a
primitive cubic root of unity, i.e. Q(WD,D) = Q(v —3).

(ii) Assume QWD,D)=Q(v—3). Then

X2y —9Y2+2NX +(y*—82)*=0
has an irrational real root y in K,. Furthermore, the real number e
belongs to K if and only if yr; is a perfect cube in K,.

Hence we have an effective way to decide ,.

§ 5. Elliptic unit. Every sextic field K in question is given in
the following way. Let F' be an imaginary quadratic number field
with the discriminant —d. Let f be a natural number and R(f) be the
ring class group of F modulo f. Assume R(f) contains a subgroup 11
of index 6 such that the conductor of U1 is exactly f. Let L be the class
field of degree 6 over F' corresponding to the ring class subgroup .
Then L is a dihedral extension of degree 12 over @. Let K be the
maximal real subfield of L, then our assumption for K is satisfied.
Conversely, when K is given, the galois closure L of K/Q is a dihedral
extension of degree 12 over @ and is cyclic sextic over the imaginary
quadratic subfield F=Q(vD,), where D, is the discriminant of K,.
Therefore L corresponds to a subgroup U of index 6 in R(f) with a
natural number f. This correspondence between K and 1l is one to
one. We observe that F=Q(+v —3) if and only if K is pure sextic.
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Let U be the subgroup of R(f) which corresponds to K. Then the
elliptic unit » of K is defined by the following:

n= l—[ ren «/Im (Trr) Im (Trst)/Im (Tr) Im (Tm)lU(Trt)ﬂ(TrSt)/7](7'!)77(Tt2!) 2.
Here 5(2) is the Dedekind eta function, and 7, is a complex number with
positive imaginary part such that Zy,+ Z belongs to the class f e R(f).
The class t e R(f) is chosen so that t1l generates the cyclic quotient
group R(f)/U. The definition of 5 is independent of the choice of 7,
and r. Therefore, if R(f) and Ul are explicitly given, we can calculate
an approximate value of 5 using Lemma 3 of [2].

It is possible to obtain R(f) and U1 explicitly, although it seems to
be very complicated in the actual calculation.

§6. Appendix. (i) The following propositions help to deter-
mine ¢, and e,.

Proposition 2. (i) Assume h, or h,is odd. Then ey, if v 7
does not belong to K. (ii) Assume h, or h,is prime to 3. Then e+,
if ¥5 does not belong to K.

Proposition 3. Let f and d be as in §5, and let d, be the dis-
eriminant of K,. Assume ¥ 3, belongs to K. Then d=3d, or 3d,=d;
and f is a power of 3.

(ii) The galois closure L of K/Q contains a totally imaginary
sextic subfield K’ not conjugate to K. Further algorithm to compute
the class number and fundamental units of K’ exists. It uses the
results in [1].

Corrections to References [2] and [3]. In [2], we add the assump-
tion that “D=—23” throughout the note. See also [4] in detail. In
Proposition 6 of [3], for ‘v, read “v/7,”. In the definition of H, in
[8], line 6 of § 1, for ‘positive units’ read “positive relative units”.
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