82. "Borel" Lines for Meromorphic Solutions of the Difference Equation $y(x+1)=y(x)+1+\lambda/y(x)$

By Niro Yanagihara

Department of Mathematics, Chiba University

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1981)

1. Introduction. In connection with the iteration of analytic functions, Kimura [1], [2] considered the equation

(E) $y(x+1)=y(x)+1+\lambda/y(x), \quad \lambda \neq 0$, and obtained a meromorphic solution $\phi(x)$ such that

$$\left(\phi(x) \sim x \left[1 + \sum_{j+k \ge 1} p_{jk} x^{-j} \left(\frac{\log x}{x}\right)^k\right] \qquad (p_{01} = \lambda)$$

(1.1) $\left| \begin{array}{c} \text{in the domain } D_{l}(R,\varepsilon) = \left\{ |x| > R, |\arg x - \pi| < \frac{\pi}{2} - \varepsilon \right\} \cup \left\{ \operatorname{Im} [xe^{-i\varepsilon}] \right\} \right.$

 $>R \} \cup \{ \operatorname{Im} [xe^{i\epsilon}] < -R \}, \text{ where } p_{10} = c \text{ is an arbitrarily prescribed constant, } \varepsilon > 0, \text{ and } R \text{ is a sufficiently large number depending on } c \text{ and } \varepsilon.$

We studied some properties of the solution $\phi(\mathbf{x})$ in [3] and, especially, proved that there is a horizontal line $L = \{ \text{Im } x = \eta \}$ such that, for any $\delta > 0$, in the half strip

(1.2) $\{x; |\text{Im } x-\eta| < \delta, \text{ Re } x > 0\},\ \phi(x) \text{ takes every value infinitely often if } \lambda \neq 1, \text{ and } \phi(x) \text{ takes every value other than } -1 \text{ if } \lambda = 1.$

We will call such a line as a "Borel" line for $\phi(x)$ [4]. It would be natural to inquire how many "Borel" lines may appear for $\phi(x)$.

Our aim in this note is to answer (partially) to this question. We will prove the following

Theorem. Suppose λ is real in the equation (E).

(i) If $\lambda \leq 1/4$, then there is only one "Borel" line for $\phi(x)$.

(ii) If $\lambda > 1/4$, then there are at least two "Borel" lines for $\phi(x)$.

2. Proof of Theorem (i). Let x_0 be a zero point of $\phi(x): \phi(x_0) = 0$. Write $x_n = x_0 - n$, $n = 0, 1, \cdots$. Then $\phi(x_1)$ satisfies $0 = \phi(x_1) + 1 + \lambda/\phi(x_1)$, i.e.,

(2.1)
$$\phi(x_i) = \frac{1}{2} [-1 \pm \sqrt{1-4\lambda}].$$

More generally

(2.2)
$$\phi(x_n) = \frac{1}{2} [-(1-\phi(x_{n-1})\pm\sqrt{(1-\phi(x_{n-1}))^2-4\lambda}], \quad n=1, 2, \cdots.$$

No. 7]

We consider the following two cases:

(a) When $0 < \lambda \leq 1/4$; (b) When $\lambda < 0$.

(a) When $0 < \lambda \leq 1/4$.

In this case, $\phi(x_1) \leq 0$ from (2.1). Suppose $\phi(x_{n-1})$ be real and ≤ 0 . Then

$$(1-\phi(x_{n-1}))^2-4\lambda\geq 0,$$

hence from (2.2) we know that $\phi(x_n)$ is real and ≤ 0 . Thus, $\phi(x_n)$, $n = 1, 2, \cdots$ are all real and ≤ 0 in this case.

(b) When $\lambda < 0$.

Obviously, $\phi(x_n)$, $n=1, 2, \cdots$ are all real.

Thus, in both cases (a) and (b), $\phi(x_n)$ are all real for $n=1, 2, \cdots$. If n is sufficiently large, then by (1.1) we have

(2.3) $\phi(x_n) \sim x_n + c + \lambda \log x_n$ $(c = p_{10}).$

Since $\phi(x_n)$ are all real, we have

(2.4)
$$\operatorname{Im} [x_n + c + \lambda \log x_n] = \operatorname{Im} x_0 + \operatorname{Im} c + \lambda \arg (x_0 - n) \longrightarrow 0$$

as $n \longrightarrow \infty$.

Since arg $(x_0-n) \rightarrow \pi$ as $n \rightarrow \infty$, we know by (2.4) that zero points of $\phi(x)$ must lie on a horizontal line

 $L = \{x; \operatorname{Im} x = -\operatorname{Im} c - \lambda \pi\}.$

Therefore, any other line than L can not be a "Borel" line, because for sufficiently small $\delta > 0$, the half-strip (1.2) can not contain any zero points of $\phi(x)$.

3. Proof of Theorem (ii). Let x_0 and x_n be the same as in §2. Put $\phi(x_n) = u_n + iv_n$ and write

(3.1) $A_n = (u_n - 1)^2 - v_n^2 - 4\lambda$, $B_n = 2(u_n - 1)v_n$. Then by (2.2) we obtain

(3.2)
$$u_{n+1} = \frac{1}{2} \left[(u_n - 1) \pm \sqrt{\frac{1}{2} \{ \sqrt{A_n^2 + B_n^2} + A_n \}} \right],$$

(3.3)
$$v_{n+1} = \frac{1}{2} \left[v_n \pm \gamma_n \sqrt{\frac{1}{2} \{ \sqrt{A_n^2 + B_n^2} - A_n \}} \right],$$

where γ_n is the sign of B_n .

Since $\lambda > 1/4$, $\phi(x_1)$ is not real. Suppose $\phi(x_n)$ is not real. Then $\phi(x_{n+1})$ is a root of the quadratic equation

(3.4) $t^2 + (1 - \phi(x_n))t + \lambda = 0.$

Since λ is real, none of the roots of (3.4) are real. Thus, none of $\phi(x_n)$, $n=1, 2, \cdots$, are real.

If n is sufficiently large, then by (2.3) $u_n - 1 \sim \text{Re}[x_0 - n] < 0$, hence we take the minus sign before $\sqrt{-}$ -symbol in (3.2) and (3.3), i.e.,

(3.2')
$$u_{n+1} = \frac{1}{2} \left[(u_n - 1) - \sqrt{\frac{1}{2} \left\{ \sqrt{A_n^2 + B_n^2} + A_n \right\}} \right],$$

N. YANAGIHARA

(3.3')
$$v_{n+1} = \frac{1}{2} \bigg[v_n - \gamma_n \sqrt{\frac{1}{2} \{ \sqrt{A_n^2 + B_n^2} - A_n \}} \bigg].$$

By (3.3') we have, supposing that $|u_n-1|$ is sufficiently large,

(3.5) $v_{n+1} = v_n [1 + \lambda/(u_n - 1)^2 + \cdots],$

and $v_{n+1}/v_n > 1$ since $\lambda > 0$, hence $|v_n|$ increases with n if $|u_n|$ is sufficiently large. Thus $v_n \rightarrow v_{\infty} \neq 0$ as $n \rightarrow \infty$. $v_{\infty} \neq \infty$ since [3, p. 102]

(3.6) $|\phi(x)/x-1| < 1/2$ for $|\operatorname{Im} x| > R'$ ($\geq R$ in (1.1))

and hence $|\operatorname{Im} x_0| \leq R'$ for any zero point x_0 of $\phi(x)$. Therefore

Im $[x_n + c + \lambda \log x_n] = \text{Im } x_0 + \text{Im } c + \lambda \arg (x_0 - n) \longrightarrow v_{\infty} \neq 0, \infty$, whence we know that, if we write

 $\eta_0 = -\operatorname{Im} c - \lambda \pi + v_{\infty},$

then the zero point x_0 lies on the line

$$L(\eta_0) = \{x; \text{Im } x = \eta_0\}.$$

Thus the pole (x_0+1) of $\phi(x)$ also lies on $L(\eta_0)$. Take $\delta > 0$ arbitrarily.

For any complex number b, let $x_0(b)$ be a b-point of $\phi(x): \phi(x_0(b)) = b$, and $x_n(b) = x_0(b) - n$. If n is sufficiently large, then by (2.3) $\phi(x_n(b)) \sim x_n(b) + c + \lambda \log x_n(b)$, which is large. Thus the value $\phi(x_n(b))$ is taken at a point x'(b) in the neighborhood $\{x; |x-(x_0+1)| < \delta\}$ of the pole (x_0+1) . Thus, in the strip

$$H(\eta_0; \delta) = \{x; |\operatorname{Im} x - \eta_0| < \delta\}$$

contains a *b*-point $x'_0(b) = x'(b) + n'$ for some positive integer *n'*. Therefore, the strip $H(\eta_0; \delta)$ contains infinitely many *b*-points of $\phi(x)$. Since *b* is any complex number, we know that $L(\eta_0)$ is a "Borel" line for $\phi(x)$.

Since λ is real, we must have another "Borel" line

{x; Im $x = -\text{Im } c - \lambda \pi - v_{\infty}$ },

and our theorem is proved. (We note that $v_{\scriptscriptstyle\infty} \! \neq \! 0.$)

Remark. It is easy to see that

$$egin{aligned} &\sqrt{rac{1}{2} \{\sqrt{A_n^2 + B_n^2} + A_n\}} {<} |u_n - 1|, \ &\sqrt{rac{1}{2} \{\sqrt{A_n^2 + B_n^2} - A_n\}} {>} |v_n|. \end{aligned}$$

Suppose $u_n - 1 < 0$ and $|u_n - 1|$ is very large. If we take the plus-sign in front of $\sqrt{-}$ -symbol in (3.2) and (3.3), then

 $u_{n+1} < 0, v_{n+1}v_n < 0$, and $|u_{n+1}|, |v_{n+1}|$ are very small. If we start from these (u_{n+1}, v_{n+1}) , then we will obtain very small $|v_{\infty}|$. From this consideration, it is quite plausible that there might be infinitely many "Borel" lines $L(\eta_n)$ and $\eta_n \rightarrow \eta^* = -\operatorname{Im} c - \lambda \pi$.

References

 T. Kimura: On the iteration of analytic functions. Funkcialaj Ekvacioj, 14, 197-238 (1971).

- [2] T. Kimura: On meromorphic solutions of the difference equation $y(x+1) = y(x)+1+\lambda/y(x)$. Symposium on Ordinary Differential Equations. Lect. Notes in Math., vol. 312, Springer-Verlag, Berlin-Heidelberg-New York, pp. 74-86 (1973).
- [3] N. Yanagihara: Meromorphic solutions of the difference equation $y(x+1) = y(x)+1+\lambda/y(x)$, I. Funkcialaj Ekvacioj, 21, 97-104 (1978).
- [4] —: Meromorphic solutions of some difference equations, II. ibid., 24, 113-124 (1981).