82. "Borel" Lines for Meromorphic Solutions

 of the Difference Equation$$
y(x+1)=y(x)+1+\lambda / y(x)
$$

By Niro Yanaginara
Department of Mathematics, Chiba University
(Communicated by Kôsaku Yosida, m. J. A., Sept. 12, 1981)

1. Introduction. In connection with the iteration of analytic functions, Kimura [1], [2] considered the equation
(E)

$$
y(x+1)=y(x)+1+\lambda / y(x), \quad \lambda \neq 0,
$$

and obtained a meromorphic solution $\phi(x)$ such that

$$
\left\{\begin{array}{l}
\phi(x) \sim x\left[1+\sum_{j+k \geqq 1} p_{j k} x^{-j}\left(\frac{\log x}{x}\right)^{k}\right] \quad\left(p_{01}=\lambda\right) \tag{1.1}\\
\text { in the domain } D_{l}(R, \varepsilon)=\left\{|x|>R,|\arg x-\pi|<\frac{\pi}{2}-\varepsilon\right\} \cup\left\{\operatorname{Im}\left[x e^{-i \varepsilon}\right]\right. \\
>R\} \cup\left\{\operatorname{Im}\left[x e^{i \varepsilon}\right]<-R\right\}, \text { where } p_{10}=c \text { is an arbitrarily pre- } \\
\text { scribed constant, } \varepsilon>0, \text { and } R \text { is a sufficiently large number } \\
\text { depending on } c \text { and } \varepsilon .
\end{array}\right.
$$

We studied some properties of the solution $\phi(\mathrm{x})$ in [3] and, especially, proved that there is a horizontal line $L=\{\operatorname{Im} x=\eta\}$ such that, for any $\delta>0$, in the half strip
$\{x ;|\operatorname{Im} x-\eta|<\delta, \operatorname{Re} x>0\}$,
$\phi(x)$ takes every value infinitely often if $\lambda \neq 1$, and $\phi(x)$ takes every value other than -1 if $\lambda=1$.

We will call such a line as a "Borel" line for $\phi(x)$ [4]. It would be natural to inquire how many "Borel" lines may appear for $\phi(x)$.

Our aim in this note is to answer (partially) to this question. We will prove the following

Theorem. Suppose λ is real in the equation (E).
(i) If $\lambda \leqq 1 / 4$, then there is only one "Borel" line for $\phi(x)$.
(ii) If $\lambda>1 / 4$, then there are at least two "Borel" lines for $\phi(x)$.
2. Proof of Theorem (i). Let x_{0} be a zero point of $\phi(x): \phi\left(x_{0}\right)$ $=0$. Write $x_{n}=x_{0}-n, n=0,1, \cdots$. Then $\phi\left(x_{1}\right)$ satisfies $0=\phi\left(x_{1}\right)+1$ $+\lambda / \phi\left(x_{1}\right)$, i.e.,

$$
\begin{equation*}
\phi\left(x_{1}\right)=\frac{1}{2}[-1 \pm \sqrt{1-4 \lambda}] . \tag{2.1}
\end{equation*}
$$

More generally

$$
\begin{equation*}
\phi\left(x_{n}\right)=\frac{1}{2}\left[-\left(1-\phi\left(x_{n-1}\right) \pm \sqrt{\left(1-\phi\left(x_{n-1}\right)\right)^{2}-4 \lambda}\right], \quad n=1,2, \cdots\right. \tag{2.2}
\end{equation*}
$$

We consider the following two cases :
(a) When $0<\lambda \leqq 1 / 4$;
(b) When $\lambda<0$.
(a) When $0<\lambda \leqq 1 / 4$.

In this case, $\phi\left(x_{1}\right) \leqq 0$ from (2.1). Suppose $\phi\left(x_{n-1}\right)$ be real and $\leqq 0$. Then

$$
\left(1-\phi\left(x_{n-1}\right)\right)^{2}-4 \lambda \geqq 0
$$

hence from (2.2) we know that $\phi\left(x_{n}\right)$ is real and $\leqq 0$. Thus, $\phi\left(x_{n}\right), n$ $=1,2, \cdots$ are all real and $\leqq 0$ in this case.
(b) When $\lambda<0$.

Obviously, $\phi\left(x_{n}\right), n=1,2, \cdots$ are all real.
Thus, in both cases (a) and (b), $\phi\left(x_{n}\right)$ are all real for $n=1,2, \cdots$.
If n is sufficiently large, then by (1.1) we have

$$
\begin{equation*}
\phi\left(x_{n}\right) \sim x_{n}+c+\lambda \log x_{n} \quad\left(c=p_{10}\right) . \tag{2.3}
\end{equation*}
$$

Since $\phi\left(x_{n}\right)$ are all real, we have

$$
\begin{align*}
\operatorname{Im}\left[x_{n}+c+\lambda \log x_{n}\right] & =\operatorname{Im} x_{0}+\operatorname{Im} c+\lambda \arg \left(x_{0}-n\right) \tag{2.4}\\
& \longrightarrow 0 \\
& \longrightarrow \infty .
\end{align*}
$$

Since $\arg \left(x_{0}-n\right) \rightarrow \pi$ as $n \rightarrow \infty$, we know by (2.4) that zero points of $\phi(x)$ must lie on a horizontal line

$$
L=\{x ; \operatorname{Im} x=-\operatorname{Im} c-\lambda \pi\} .
$$

Therefore, any other line than L can not be a "Borel" line, because for sufficiently small $\delta>0$, the half-strip (1.2) can not contain any zero points of $\phi(x)$.
3. Proof of Theorem (ii). Let x_{0} and x_{n} be the same as in $\S 2$. Put $\phi\left(x_{n}\right)=u_{n}+i v_{n}$ and write

$$
\begin{equation*}
A_{n}=\left(u_{n}-1\right)^{2}-v_{n}^{2}-4 \lambda, \quad B_{n}=2\left(u_{n}-1\right) v_{n} . \tag{3.1}
\end{equation*}
$$

Then by (2.2) we obtain

$$
\begin{align*}
& u_{n+1}=\frac{1}{2}\left[\left(u_{n}-1\right) \pm \sqrt{\frac{1}{2}\left\{\sqrt{A_{n}^{2}+B_{n}^{2}}+A_{n}\right\}}\right] \tag{3.2}\\
& v_{n+1}=\frac{1}{2}\left[v_{n} \pm r_{n} \sqrt{\frac{1}{2}\left\{\sqrt{A_{n}^{2}+B_{n}^{2}}-A_{n}\right\}}\right] \tag{3.3}
\end{align*}
$$

where γ_{n} is the sign of B_{n}.
Since $\lambda>1 / 4, \phi\left(x_{1}\right)$ is not real. Suppose $\phi\left(x_{n}\right)$ is not real. Then $\phi\left(x_{n+1}\right)$ is a root of the quadratic equation

$$
\begin{equation*}
t^{2}+\left(1-\phi\left(x_{n}\right)\right) t+\lambda=0 \tag{3.4}
\end{equation*}
$$

Since λ is real, none of the roots of (3.4) are real. Thus, none of $\phi\left(x_{n}\right)$, $n=1,2, \cdots$, are real.

If n is sufficiently large, then by (2.3) $u_{n}-1 \sim \operatorname{Re}\left[x_{0}-n\right]<0$, hence we take the minus sign before $\sqrt{ }{ }^{-}$-symbol in (3.2) and (3.3), i.e.,

$$
\begin{equation*}
\left.u_{n+1}=\frac{1}{2}\left[\left(u_{n}-1\right)-\sqrt{\frac{1}{2}\left\{\sqrt{A_{n}^{2}+B_{n}^{2}}+A_{n}\right.}\right\}\right], \tag{3.2'}
\end{equation*}
$$

$$
v_{n+1}=\frac{1}{2}\left[v_{n}-\gamma_{n} \sqrt{\frac{1}{2}\left\{\sqrt{A_{n}^{2}+B_{n}^{2}}-A_{n}\right\}}\right] .
$$

By (3.3') we have, supposing that $\left|u_{n}-1\right|$ is sufficiently large,

$$
\begin{equation*}
v_{n+1}=v_{n}\left[1+\lambda /\left(u_{n}-1\right)^{2}+\cdots\right], \tag{3.5}
\end{equation*}
$$

and $v_{n+1} / v_{n}>1$ since $\lambda>0$, hence $\left|v_{n}\right|$ increases with n if $\left|u_{n}\right|$ is sufficiently
large. Thus $v_{n} \rightarrow v_{\infty} \neq 0$ as $n \rightarrow \infty . \quad v_{\infty} \neq \infty$ since [3, p. 102]
(3.6) $\quad|\phi(x) / x-1|<1 / 2$ for $|\operatorname{Im} x|>R^{\prime} \quad(\geqq R$ in (1.1))
and hence $\left|\operatorname{Im} x_{0}\right| \leqq R^{\prime}$ for any zero point x_{0} of $\phi(x)$. Therefore
$\operatorname{Im}\left[x_{n}+c+\lambda \log x_{n}\right]=\operatorname{Im} x_{0}+\operatorname{Im} c+\lambda \arg \left(x_{0}-n\right) \longrightarrow v_{\infty} \neq 0, \infty$, whence we know that, if we write

$$
\eta_{0}=-\operatorname{Im} c-\lambda \pi+v_{\infty}
$$

then the zero point x_{0} lies on the line

$$
L\left(\eta_{0}\right)=\left\{x ; \operatorname{Im} x=\eta_{0}\right\} .
$$

Thus the pole $\left(x_{0}+1\right)$ of $\phi(x)$ also lies on $L\left(\eta_{0}\right)$. Take $\delta>0$ arbitrarily.
For any complex number b, let $x_{0}(b)$ be a b-point of $\phi(x): \phi\left(x_{0}(b)\right)$ $=b$, and $x_{n}(b)=x_{0}(b)-n$. If n is sufficiently large, then by $(2.3) \phi\left(x_{n}(b)\right)$ $\sim x_{n}(b)+c+\lambda \log x_{n}(b)$, which is large. Thus the value $\phi\left(x_{n}(b)\right)$ is taken at a point $x^{\prime}(b)$ in the neighborhood $\left\{x ;\left|x-\left(x_{0}+1\right)\right|<\delta\right\}$ of the pole $\left(x_{0}+1\right)$. Thus, in the strip

$$
H\left(\eta_{0} ; \delta\right)=\left\{x ;\left|\operatorname{Im} x-\eta_{0}\right|<\delta\right\}
$$

contains a b-point $x_{0}^{\prime}(b)=x^{\prime}(b)+n^{\prime}$ for some positive integer n^{\prime}. Therefore, the strip $H\left(\eta_{0} ; \delta\right)$ contains infinitely many b-points of $\phi(x)$. Since b is any complex number, we know that $L\left(\eta_{0}\right)$ is a "Borel" line for $\phi(x)$.

Since λ is real, we must have another "Borel" line

$$
\left\{x ; \operatorname{Im} x=-\operatorname{Im} c-\lambda \pi-v_{\infty}\right\}
$$

and our theorem is proved. (We note that $v_{\infty} \neq 0$.)
Remark. It is easy to see that

$$
\begin{aligned}
& \sqrt{\frac{1}{2}\left\{\sqrt{A_{n}^{2}+B_{n}^{2}}+A_{n}\right\}}<\left|u_{n}-1\right|, \\
& \sqrt{\frac{1}{2}\left\{\sqrt{A_{n}^{2}+B_{n}^{2}}-A_{n}\right\}}>\left|v_{n}\right| .
\end{aligned}
$$

Suppose $u_{n}-1<0$ and $\left|u_{n}-1\right|$ is very large. If we take the plus-sign in front of $\sqrt{ }$-symbol in (3.2) and (3.3), then

$$
u_{n+1}<0, v_{n+1} v_{n}<0, \quad \text { and }\left|u_{n+1}\right|,\left|v_{n+1}\right| \quad \text { are very small. }
$$

If we start from these (u_{n+1}, v_{n+1}), then we will obtain very small $\left|v_{\infty}\right|$. From this consideration, it is quite plausible that there might be infinitely many "Borel" lines $L\left(\eta_{n}\right)$ and $\eta_{n} \rightarrow \eta^{*}=-\operatorname{Im} c-\lambda \pi$.

References

[1] T. Kimura: On the iteration of analytic functions. Funkcialaj Ekvacioj, 14, 197-238 (1971).
[2] T. Kimura: On meromorphic solutions of the difference equation $y(x+1)$ $=y(x)+1+\lambda / y(x)$. Symposium on Ordinary Differential Equations. Lect. Notes in Math., vol. 312, Springer-Verlag, Berlin-Heidelberg-New York, pp. 74-86 (1973).
[3] N. Yanagihara: Meromorphic solutions of the difference equation $y(x+1)$ $=y(x)+1+\lambda / y(x)$, I. Funkcialaj Ekvacioj, 21, 97-104 (1978).
[4] -: Meromorphic solutions of some difference equations, II. ibid., 24, 113-124 (1981).

