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1. Free arrangements. We call a non-void finite amily of hyper-
planes in C"/ (or P"/(C)) an affine (resp. projective) n-arrangement.
A set X is simply called an n-arrangemen if X is either an affine n-
arrangement or a projective n-arrangement. An n-arrangement X is
called to be central when zex H#. Denote Jez H by IX].

Let X be a central affine n-arrangement. By an appropriate
translation of the origin we can assume that .ez H contains the origin
O in C"/. Let Q e C[zo, ..., z,] be a square-free defining equation of
IX[. By (C) denote we C)c./,,o. Then

D(X)’= {0; a germ at the origin of holomorphie vector fields
such that 0. Q e Q.

is an -module. We call X to be free if D(X) is a ree -module.
Assume that a central affine n-arrangement X is ree. Let

{00, ., 0} be a system of ree basis or D(X) such that each 0 is homo-
geneous of degree d. (0 is homogeneous o degree d i 0 has an ex-
pression

o= ,f(/z),
j=O

where each f e C[Zo, ..., z,] is either 0 or homogeneous o degree d.)
We call the integers (do, ..., d) the generalized exponents of X. They
depend only on X [7].

Let X be a projective n-arrangement. Denote P"/(C) simply by
P"/. Let Q e C[zo, ., z,/] be a homogeneous polynomial defining a
set [XI P/. Then there exists a unique central affine (n/ 1)-arrange-
ment X such that

v(e)-IXlC+,
We cll X to be free i X is ree.

Assume that a projective n-arrangement X is ree. Let (do, d,
’’, dn) be the generalized exponents of X, then we can assume that

do= 1 (due to the existence o2 the Euler vector field

z(/z)).
i=O

The generalized exponents of X are defined to be (dl, ..., d).
*) The author gratefully acknowledges support of this project by the Grant

in Aid for Scientific Research of the Ministry of Education No. 574047.
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Next let X be a (perhaps non-central) affine n-arrangement.
Identify C/ with a Zariski open set Pn/\H, where H is a hyper-
plane in pn/. Define a projective n-arrangement

X-XU{H}.
We call X to be free if X is free. Assume that a projective n-arrange-
ment X is free. Then the generalized exponents of X are defined to
be those of X. This definition is consistent with that of the gener-
alized exponents of a free central affine n-arrangement.

We have thus defined the generalized exponents of any free n-
.arrangement. Let X be an n-arrangement and (do,...,d) be its
generalized exponents. Put

M= Cn+\[XI (when X is affine)
Pn+\IX (vehen X is projective).

Let P(t) be the Poincar polynomial of M. Then we have
Theorem 1. P(t)-- I-[ ’=o (1-b dt).
The proof of Theorem 1 highly depends upon the combinatorial

formula (using the MSbius functions) for P,(t) ([2, (5.2)], [9, Theorem
A]) and the theory of the Hilbert polynomial of _)/J(Q). (J(Q) stands
for the Jacobian ideal of Q in (.) The complete proof will be found
in [8] [9].

Let GcGL(nq-1;R) be a finite Coxeter group acting on Cn+.
Then the set of the reflection hyperplanes makes a central affine
arrangement. Such an arrangement is called a Coxeter arrangement.
We know that a Coxeter arrangement is free and that the exponents
of G coincide with our generalized exponents of X [4]. In this special
case Theorem 1 was obtained by Shepherd-Todd-Brieskorn [6] [1].

But the class of the free central affine arrangement is far wider
than that of the Coxeter arrangements. In fact many examples show
that the freeness of arrangement is a combinatorial property [7].

The following theorem gives another important class of free cen-
tral arrangements:

Theorem 2. Le GcGL(n/I; C) be a finite group generated by
unitary reflections. Then the set of the reflection hyperplanes makes
a free central affine arrangement.

This will be proved in the following section.
2. The proof of Theorem 2. Put V--Cn+. We regard V as a

unitary space with the ordinary hermitian form ?_-0 x,y,. Let G
cU(n+ 1) be a finite group generated by unitary reflections. Put

e- *[0, ., 0, 1, 0, ., 0] (0___i_n),

i-th place
and {e0, ..., e} is a system of orthonormal basis for V. Then g e G
acts on V by
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[g" e0, ., g. en] [e0, ..., e]. g,
i.e., g. e==oge (g is the (i, ])-entry of g).

Let V* be the dual C-vector space of V. Let {zo, ..., z}V* be
the system of the dual basis of {e0, ..., e}. Then g e G acts on V* by

[g. z0, ., g. Zn] [Z0, ", Zn] g-1,
which is the contragradient representation. This representation of G
induces another representation of G on S--S(V*) (the symmetric
product of V*) by

g f(Zo, ..., Zn) f(g Zo, ", g" Zn) (f e S -- C[zo, ..., zn]).
Thus g e G acts on S(R)V by

f(R)v(g, f)(R)(g, v) (f e S, v e V).
In this situation, there exist Uo, ..., Un e (S(R)V) such.that

(S(V)G"SGUo SGUn
and each a, e S (O]_n) is a homogeneous polynomial of z0,..., z of
degree d, where

u a(R)e (0

_
i

_
n).

j=O

Define z/e S by
z/= det (a).

Let X be the set of the reflection hyperplanes of G. The ollowing
proposition was proved by Orlik-Solomon [3]:

Proposition 1. (i) z/is a square-free defining equation of
(ii) Let f e S. Then g. f =(det g)-l. f for any g e G if and only

if f e S.
Define vector fields on V by

= a(3/3z) (O_i_n).
j=O

Proposition 2. A set {30, ..., n} is a system of free basis for
D(X).

Proof. Since u, is invariant under G, we have
aij(R)e--, (g.aij)(R)(g.e) (O_i_n)

and thus
(,)
Then

(a,)--(g.a).tg.

[g. (30. A), ..., g. (n"
[3(g’ A)/3(g" Zo), "", 3(g" A)/3(g" z)]" t(g.a)

=(det g)-[A/(g Zo), ..., 3A/3(g. zn)]. g-1. t(a)
(by Proposition 1 (ii) and ( ))

=(det g)-[3A/3Zo, ..., 3A/3z]. (3z/3(g. z)). g-. (a)
(det g)-[3A/Zo, ., A/3z]. (a)

(by g=(3z/3(g, z)))
(det g)-[0" A, ., 3. A].
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By combining this with Proposition 1 (ii), we have. e S. (O_i_n).
This implies that , e D(X) (O_in) because of Proposition 1 (i).
Since 1-det (a,) is a square-free defining equation of X, we know that
a set {0, "", } is a system of free basis or D(X) in the light of [5,
(1.8) ii)].

The ollowing is obtained from Theorems 1 and 2:
Corollary. Put d,--deg, (Oi_n). Then the Poincarg polyno-

mial of Cn/l\lXI is equal to

[ (1 + d,t).
i=O

This result was very recently proved by Orlik-Solomon [3]. Thus
Theorem 1 was proved to be a generalization o the main theorem in
[3].
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