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This note is concerned with a global, explicit construction of the
fundamental solution for the Cauchy problem

-i3t+(t, x)-H t, x, +(t, x), (t, x) e Rn/l,
( 1

+(0, x)= (x),
with a quadratic Hamiltonian H"

H(t, x, )=(($), )+ (fl()x, $)+ (r(t)x, x)

+ (a(O, )-- (a#), x) + c(t),
where , , r are real nX n matrices with , r symmetric and a, a e R,
c e R. All the coefficients are assumed to be continuously dependent
on t.

We shall construct a unitary map ," +(x)(t, x) in L2(Rn) which
is strongly continuous in t and has an explicit form written by means
of one or two integral transformations. One can obtain solutions for
a more general class of Hamiltonians at the expense of such explicit-
ness (Fujiwara [1], Kitada and Kumano-go [3]). As our tools we shall
make use of Maslov indices and representations of the Heisenberg
group and the metapletic group. Although they are well established
facts, it would bear some meaning to review them in this connection.

To make H(t, x, D) a symmetric operator, we shall assign to (fix, )
the operator

(<x,D>+<D,x)),

while to the rest of the symbol an operator in the usual way. One can
write H=H+H2 with

H(t, x, )= -a(a, (x,
where a=(a,a) and a denotes the symplectic form a((x,), (x’,’))
=<z’, >--<, ’>.

1. Heisenberg group. When a is independent of t, the funda-
mental solution of
( 2 ) Dt=H(t, x, D), (0, x) (x) (R=)
is given by Vt(a, c)=e*tV($a), where
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(t)=i c(v)dr, V(a)(q)=exp (i(-(a2, x}+ (al, a2} )}q(x+al).2
The relation

( 3 V(a)V(a’)= V(a+a’)e-(/)(,’)

implies the group action
X (a, z)zV(a)()

of the Heisenberg group X on L(R) as unitary operators. X is de-
fined by

X=RXT, T={zeC;[zl=l}
with the multiplication law

(a, z)(a’, z’)=(a+a’, zz’e-(/)(,’)).
In the general case when a(t) may depend on t, the fundamentaI

solution can be realized as a curve in X in the following way. Let
R, u e X, be the right translation o X, Ru(a, z)= (a, z)u, and u(t) be
the solution of

4 ) ---u(t)=dRu(a(t), 0), u(0)= (0, 1),
dt

where (a(t), 0) is regarded as a tangent vector to X at (0.1). Writing
u= (v, w) with v e R, w e T, we have

i dr)v($):I: a(r)dr, w(t):exp (- I: a(a(r), v(r))

Now defining

we get the fundamental solution of (2) in this general case.
Since the transformation (x, )(x, )+v(t) is generated by the

Hamiltonian system

it is natural to ask what form Vr takes when v(T)=0 for some T0.
Let y (v(t) 0g t T} be the closed curve, then

i Ioa(a(r),v())d= i I (vi, dv-(v,dv=i I a,

where S is a two dimensional surface with as its boundary. So we
have

Vr=exp (i(T)+ i I
2. Metaplectic group. Let us proceed to the equation

( 5 D=H(t, x, D), (0, x)=(x) e (Rn).
We shall associate H with a curve F(t) in the Lie algebra sp(n) of the
real symplectic group Sp(n):

-i1--r -- I
he 2X 2n matrix solution of he linear ordinary differential equation
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d.s(t) F(t)s(t), s(O) I(6)
dt

satisfies the identity sJs-J, thus belonging to Sp(n).
Sp(n) is nothing but the group of linear canonical transformations,

so it is well known that under a suitable condition s is described by a
generating function.

Lemma. Let s--[ac bd] be an element of Sp(n). Then he follow-
ing conditions on s are equivalent.

(a) det b =/=0.
(b) One can find a real quadratic form

1 (Qx’, x’S(x, x’)= (Px, x}-(Lx, x’}+-
with some symmetric P, Q and invertible L such that the graph of the
map s (x’, ’)(x,. ) is equivalently described by =S/3x, ’= -3S/3x’.

The proof of this lemma shows that, if det b:/:0, we have
(7) P=db-, Q=b-a and L=b-’.

Now let X={se Sp(n) detb=0} and X0={t e R ;s(t) e X}. The above
lemma allows us to define a unitary operator

( 8 U(s)()=(2)-/ Idet LI/[ eS(x’x’)(x’)dx’

or every s e Sp(n)\X. U(s) induces the automorphisms of (R) and
of 3’(R0 in an obvious way, and has an important property:
( 9 U(s)L(x, D) U(s)-=L s-(x, D)
for every linear function L(x, ) of x, .

Moreover, putting U= U(s(t)), we claim that
(10) DtUt(r)-’H.(t, x, D)Vt(), e , t e o.

Sketch of the proof of (10). From (9) we have

Dt f eiSdx’=.[- eiS’(t, x, x’)dx’=S’(t, x, tdx-tbD) feiSdx’.

A careful calculation in the light of the definition (6) of s(t) now gives

S’(t, x, tdx-tbD)=H,(t, x, D) __1__ Tr (L-’L’).
2i

Furthermore, the fact that Dt ]det L]’/’=(1/2i)Idet L]’n Tr (L-’L’) en-
ables us to come to the conclusion (10).

We have yet to define U for t e X0. In doing so, we shall recall
some results of Leray [4] concerning the unitary representation of the
metaplectic group. First, U(s)fails to have the group theoretical pro-
perry: If s,s,s,=I, s e X, -then

U(s)U(s2)U(s)=exp {(i/4) sgn (s, s2, s)},(11)
sgn (s, s, s) =sgn (P+Q) =sgn (P+Q) sgn (P+Q),

with P, Q defined from s through (7). Let Mp(n)be the connected
double covering group of Sp(n) with the projection p’Mp(n)-.Sp(n).
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We shall write 2=p-($) and i for the unit element of Mp(n). The
ollowing is due to Leray [4]. (See also [5], [2].)

Theorem. There exists a unique function m() of Mp(n)\ with
values in Z for even n, in (Z+ 1/2) for odd n such that m is locally
constant and satisfies
(12) mO-9= -mO),

1(13) sgn (s, s, s) m()+m()+m() mod. 4,

i =i, e2, s=p().
Let us define for e Mp(n)\

UO) e-(/(U(s)
and for general e Mp(n)
(14) UO)=U()UO) with =,, e 2.
From (11), (13) we get the unitary representation of Mp(n)(faithful
but not irreducible). This in turn leuds to the definition of the funda-
mental solution"

Ut- U((t)),
where (t) is the unique continuous lift-up of s(t) to Mp(n) with (0)=.

To prove that U is the solution of (5), it suffices to notice the
following" In a local decomposition s(t)=s,(t)s, s, s e , with constant
s, s(t) also 2ulfills the first ecluation of (6). And in proving (10)we
have used only that condition of s, aside from that s e Sp(n) \. Strong
continuity of U(t) follows easily from (8) and (14).

As in 2, it is of our concern to study Ur for a T0 with s(T)=I,
because s(t) is the Hamiltonian flow of --H. With any e -, we have

( i (m((T))--mO)))I.UO(T)) =exp

This index depends only on the homotopy class of the close curve
F {s(t) 0_< t_< T} in Sp(n). So we can write

UO(T))=i-m(r)I
with the integer

m(r) mO(T),) mO,).
3. Conclusion and a remark. We are now i a position to con-

clude that the unitary operator
Ut= U. V(s(t)-a, c)

becomes the fundamental solution of (1). cU is strongly continuous
in t and further satisfies

cUr=i-mr exp {i((T)+ a)}
when .[i s(r)-’a(r)dr:O and s(T)=I.

While V(a, c) and U are in principle explicitly calculatecl from H
and H, the Maslov index m0) has been rather abstractly introduced.



366 K. NISHIWADA [Vol. 56 (A),

But a method of Souriau [5] provides us with a practical way to cal-
culate it. To sketch this, we identify R with C by the map (x, )
-x+i. Let A be an element of GL(n, C) with no eigenvalues on the
negative real axis. For such A the logarithm of A can be defined by

Log (A)= {(rI-A)--(r -1)-I}dr.
(t) may be only an R-linear map in C by the above identification..

But a fact concerning Lagrangian planes makes it possible to find a
unitary map (t) satisfying (t)(iRO=(t)(iRO, along with a continuous
function 0(t) such tha det (-9=exp (iO(t)) with 0(0)=0. The follow-
ing formula is then valid.

1m((t)) =-2 {-O(t)+i Tr Lo (-(t)(t)-9}.

The condition that -(t)u(t)- has no eigenvalue equal to -1 is equi-
valent to saying that t e X0.
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