19. Finitely Additive Measures on \mathbf{N}

By Masahiro Yasumoto
Department of Mathematics, Nagoya University
(Communicated by Kôsaku Yosida, M. J. A., March 12, 1979)

1. Introduction. In this paper, we improve the theorem of Jech and Prikry [2] on projections of finitely additive measures. Let N denote the set of all natural numbers. A (finitely additive) measure on N is a function $\mu: P(N) \rightarrow[0,1]$ such that $\mu(\phi)=0, \mu(N)=1$ and if X and Y are disjoint subsets of N, then $\mu(X \cup Y)=\mu(X)+\mu(Y) . \quad \mu$ is nonprincipal if $\mu(E)=0$ for every finite set $E \subset N$. Let $F: N \rightarrow N$ be a function. If μ is a measure on N, then $\nu=F^{*}(\mu)$ (the projection of μ by F) is the measure defined by $\nu(X)=\mu\left(F^{-1}(X)\right)$.

Theorem (Jech and Prikry). There exist a measure μ on N and a function $F: N \rightarrow N$ such that
a) $F^{*}(\mu)=\mu$,
b) if $X \subseteq N$ is such that F is one-to-one on X, then $\mu(X) \leqq \frac{1}{2}$.

A measure is two-valued if the values is $\{0,1\}$. The theorem of Jech and Prikry contrasts with the following theorem concerning two-valued measure (Frolik [1] and Rudin [3]) :

If μ is a two-valued measure and $F: N \rightarrow N$ is such that $F^{*}(\mu)=\mu$, then $F(x)=x$ on a set of measure 1.

In this paper we prove the following
Theorem. There exist a measure μ and a function $F: N \rightarrow N$ such that
a) $F^{*}(\mu)=\mu$,
b) if $X \subseteq N$ is such that F is one-to-one on X, then $\mu(X)=0$.
2. Sketch of the proof. We shall now state two results, to be proved in the following sections. We shall indicate how Theorem follows from them.

Proposition 1. For any prime p, there exist a function $F_{p}: N$ $\rightarrow \boldsymbol{N}$ and a finitely additive measure η_{p} such that

1) $F_{p}^{*}\left(\eta_{p}\right)=\eta_{p}$,
2) if $X \subseteq N$ is such that F_{p} is one-to-one on X, then $\eta_{p}(X) \leqq 1 /$ ($p-1$).

Proposition 2. There exists a function $f_{p}: N \xrightarrow[\text { onto }]{1 ; 1} N$ such that $f_{p} F_{3}^{-1}=F_{p}^{-1} f_{p}$ where F_{3} and F_{p} are the functions in Proposition 1.

We let $F=F_{3}$ and $\lambda_{p}(X)=\eta_{p}\left(f_{p}(X)\right)$ where $f_{p}(X)=\left\{f_{p}(x) \mid x \in X\right\}$.

Since f_{p} is one-to-one and onto, λ_{p} is a finitely additive measure.
First we prove
3) $F^{*}\left(\lambda_{p}\right)=\lambda_{p}$,
4) if $X \subseteq N$ is such that F is one-to-one on X, then $\lambda_{p}(X) \leqq 1 /$ ($p-1$).
Since f_{p} is one-to-one and onto, 4) holds by 2) because if F is one-to-one on X, then F_{p} is one-to-one on $f_{p}(X)$. By 1), for any $X \subseteq N, \eta_{p}(X)=\eta_{p}\left(F_{p}^{-1}(X)\right)$. Therefore $\lambda_{p}(X)=\eta_{p}\left(f_{p}(X)\right)=\eta_{p}\left(F_{p}^{-1}\left(f_{p}(X)\right)\right)$ $=\eta_{p}\left(f_{p}\left(F^{-1}(X)\right)\right)=\lambda_{p}\left(F^{-1}(X)\right)$ by Proposition 2. Then 3) follows. It is important that in 3) and 4) F does not depend on p.

Let $\left\{a_{n} \mid n \in N\right\}$ be a bounded sequence of real numbers, and ν be a two-valued measure. Then there exists a unique real number a, which we denote by $a=\lim _{\nu} a_{n}$, such that for any $\varepsilon>0, \nu\left(\left\{n| | a-a_{n} \mid<\varepsilon\right\}\right)=1$.

Let p_{n} be the n-th prime number. By letting $\mu(X)=\lim _{\nu} \lambda_{p_{n}}(X)$, we get a theorem. Because μ is obviously a finitely additive measure, $\mu(X)=\lim _{\nu} \lambda_{p_{n}}(X)=\lim _{\nu} \lambda_{p_{n}}\left(F^{-1}(X)\right)=\mu\left(F^{-1}(X)\right)$ and if F is one-to-one on X, then $\mu(X)=\lim _{\nu} \lambda_{p_{n}}(X) \leqq \lim _{\nu} 1 /\left(p_{n}-1\right)=0$.
3. Proof of Proposition 1. Original idea is due to Jech and Prikry. For each $X \subseteq N$, we define $X(n)=$ "the number of elements of $X \cap\{1,2,3, \cdots, n\} "$ and $\mu_{0}(X)=\lim _{\nu} X(n) / n$. Obviously $\mu_{0}(X)=\mu_{0}(X+1)$ and $\mu_{0}(k N)=1 / k$.

Let $\mu_{n}(X)=\frac{1}{n} \sum_{k=0}^{n-1} p^{k} \mu_{0}\left(p^{k} X\right)$ and $\eta_{p}(X)=\lim _{\nu} \mu_{n}(X) . \quad$ It is easily checked that η_{p} is a finitely additive measure and $\eta_{p}(X)=\eta_{p}(X+1)$. We will show
5) $\eta_{p}(p X)=\frac{1}{p} \eta_{p}(X)$.

For each $n \geqq 1$, we have
6) $\left|\mu_{n}(X)-p \mu_{n}(p X)\right|=\left|\frac{1}{n} \sum_{k=0}^{n-1} p^{k} \mu_{0}\left(p^{k} X\right)-\frac{p}{n} \sum_{k=0}^{n-1} p^{k} \mu_{0}\left(p^{k+1} X\right)\right|$

$$
=\frac{1}{n}\left|\mu_{0}(X)-p^{n} \mu_{0}\left(p^{n} X\right)\right| \leqq \frac{1}{n}
$$

because $\mu_{0}(X) \leqq 1$ and $\mu_{0}\left(p^{n} X\right) \leqq \mu_{0}\left(p^{n} N\right)=1 / p^{n}$. Applying lim ${ }_{\nu}$ to 6), we get 5).

We define $F_{p}(m)=k$ where $m=p^{i}(k p-j)$ for some i and $1 \leqq j<p$. For any $i=0,1,2, \cdots$ and $j=2,3,4, \cdots, p-1$, let $S_{j}^{i}=\left\{p^{i}(k p-j) \mid k\right.$ $=1,2,3, \cdots\}, S_{j}=\bigcup_{i=0} S_{j}^{i}, T^{i}=\left\{p^{i}(k p-1) \mid k=1,2,3, \cdots\right\}$, and $T=\bigcup_{i=0} T^{i}$.

Define a function $G: \bigcup_{2 \leqq j<p} S_{j} \rightarrow T$ as $G\left(p^{i}(k p-j)\right)=p^{i}(k p-1)$.
Since $T^{0}, T^{0}-1, \cdots, T^{0}-p+1$ are mutually disjoint and their union is $N, \eta_{p}\left(T^{0}\right)=1 / p$. Therefore $\eta_{p}\left(S_{j}^{i}\right)=\eta_{p}\left(T^{i}-p^{i}(j-1)\right)=\eta_{p}\left(T^{i}\right)=\eta_{p}\left(p^{i} T^{0}\right)$ $=1 / p^{i+1}$. We show $\eta_{p}\left(S_{j}\right)=\eta_{p}(T)=1 /(p-1)$. For S_{j}^{i}, T^{i} are mutually
disjoint and $\bigcup_{i=0}^{n} T^{i} \subset T \subset N-\bigcup_{j=2}^{p-1} \bigcup_{i=0}^{n} S_{j}^{i}$ then $\sum_{i=0}^{n} \frac{1}{p^{i+1}} \leqq \eta_{p}(T) \leqq 1-(p-2)$ $\times \sum_{i=0}^{n} \frac{1}{p^{i+1}}$. Let $p \rightarrow \infty$, we have $\eta_{p}(T)=1 /(p-1)$. Similarly $\eta_{p}\left(S_{j}\right)$ $=1 /(p-1)$.

Remark. $\quad \eta_{p}\left(S_{j}\right)=\sum_{i=0}^{\infty} \eta_{p}\left(S_{j}^{i}\right)$ and $\eta_{p}(T)=\sum_{i=0}^{\infty} \eta_{p}\left(T^{i}\right)$.
Lemma 1. Let η be a finitely additive measure on N and $A=\bigcup_{i=0}^{\infty} A_{i}$ (disjoint union). If $\eta(A)=\sum_{i=0}^{\infty} \eta\left(A_{i}\right)$, then for any $X \subseteq N, \eta(X \cap A)$ $=\sum_{i=0}^{\infty} \eta\left(X \cap A_{i}\right)$.

Proof. Since A_{i} are mutually disjoint and

$$
\begin{aligned}
& \bigcup_{i=0}^{n}\left(X \cap A_{i}\right) \subset(X \cap A) \subset\left(\bigcup_{i=0}^{n}\left(X \cap A_{i}\right) \cup \bigcup_{i=n+1}^{\infty} A_{i}\right), \\
& \sum_{i=0}^{n} \eta\left(X \cap A_{i}\right) \leqq \eta(X \cap A) \leqq \sum_{i=0}^{n} \eta\left(X \cap A_{i}\right)+\sum_{i=n+1}^{\infty} \eta\left(A_{i}\right) .
\end{aligned}
$$

By letting $n \rightarrow \infty$, Lemma 1 follows because $\sum_{i=n+1}^{\infty} \eta\left(A_{i}\right)$ tends to 0 .
Now we prove
7) $F_{p}^{*}\left(\eta_{p}\right)=\eta_{p}$. We will show $\eta_{p}(X)=\eta_{p}\left(F_{p}^{-1}(X)\right)$ for any $X \subseteq N$. Let $A_{n}=T^{n}$ $\cup \bigcup_{j=2}^{p-1} S_{j}^{n}$ and $B_{n}=\bigcup_{k=0}^{n} A_{k}$. The sets A_{n} are pairwise disjoint and $\eta_{p}\left(A_{n}\right)$ $=(p-1) / p^{n-1}, \eta_{p}\left(B_{n}\right)=1-1 / p^{n-1}$. It follows from the definition of F_{p} that for each $n \in N, F_{p}^{-1}(X) \cap A_{n}=\bigcup_{j=1}^{p-1} p^{n}(p X-j)$. Consequently, if we denote $a=\eta_{p}(X)$, then

$$
\begin{aligned}
& \eta_{p}\left(F_{p}^{-1}(X) \cap B_{n}\right)=a\left(1-\frac{1}{p^{n+1}}\right) \quad \text { and } \\
& \eta_{p}\left(B_{n}-F_{p}^{-1}(X)\right)=(1-a)\left(1-\frac{1}{p^{n+1}}\right)
\end{aligned}
$$

Now if n tends to infinity, $\eta_{p}\left(F_{p}^{-1}(X)\right)=a$ which proves 7$)$.
Next we show
8) if $X \subseteq N$ is such that F_{p} is one-to-one on X, then $\eta_{p}(X) \leqq 1 /(p-1)$. By Lemma 1 and Remark,

$$
\begin{aligned}
\eta_{p}\left(X \cap S_{j}\right) & =\sum_{i=0}^{\infty} \eta_{p}\left(X \cap S_{j}^{i}\right)=\sum_{i=0}^{\infty} \eta_{p}\left(X \cap S_{j}^{i}+(j-1) 3^{i}\right) \\
& =\sum_{i=0}^{\infty} \eta_{p}\left(G\left(X \cap S_{j}^{i}\right)\right)=\sum_{i=0}^{\infty} \eta_{p}\left(G\left(X \cap S_{j}^{i}\right) \cap T_{j}\right)=\eta_{p}\left(G\left(X \cap S_{j}\right)\right)
\end{aligned}
$$

Let $Y=(X \cap T) \cup \bigcup_{j=2}^{p-1} G\left(X \cap S_{j}\right)$. Since F_{p} is one-to-one on $X, X \cap T$ and $G\left(X \cap S_{j}\right)(j=2,3, \cdots, p-1)$ are pairwise disjoint. Then $Y \subseteq T$ and
$\eta_{p}(X)=\eta_{p}(Y) \leqq \eta_{p}(T)=1 /(p-1)$.
Now by 7) and 8), Proposition 1 follows.
4. Proof of Proposition 2. Let us start with the proof of the following

Lemma 2. Let $N=\bigcup_{i=1}^{\infty} N_{i}=\bigcup_{j=1}^{\infty} M_{j}$ (disjoint union), for all i and j $\left|N_{i}\right|=\left|M_{j}\right|, 1 \in N_{1} \cap M_{1}$ and for all $n, n \in \bigcup_{i<n} N_{i}$ and $n \in \bigcup_{j<n} M_{j}$. Then there exists a function $f: N \underset{\text { onto }}{1 ; 1} N$ such that $f\left(N_{n}\right)=M_{f(n)}$.

Proof. We define $f(i)$ for $i \in N_{n}$ by induction on n such that f is one-to-one and $f\left(N_{n}\right)=M_{f(n)}$.

We first put $f(1)=1$ and f to map N_{1} one-to-one onto M_{1}. Then $f\left(N_{1}\right)=M_{f(1)}$ and f is one-to-one. If we define $f(i)$ for $i \in N_{k}(k<n)$ such that $f\left(N_{k}\right)=M_{f(k)}$ and f is one-to-one on $\bigcup_{k<n} N_{k}$, then $f(n)$ is already defined because $n \in \bigcup_{k<n} N_{k}$. We take $f(i)$ for $i \in N_{n}$ such that f maps N_{n} one-to-one onto $M_{f(n)}$. Then $f\left(N_{k}\right)=M_{f(k)}$ for $k \leqq n$ and f is one-to-one on $\bigcup_{k \leq n} N_{k}$.

We must prove f is onto. If not, we pick the least x such that $x \in N-f(N)$. Then for some $y<x, x \in M_{y}$. Since $y<x$, there is a z such that $f(z)=y$ and therefore $x \in M_{y}=f\left(N_{z}\right)$. So $x \in f(N)$. This contradiction proves Lemma 2.

Now we return to the proof of Proposition 2. Let $N_{i}=F_{3}^{-1}(i)$ and $M_{j}=F_{p}^{-1}(j)$. By Lemma 2, there is a function $f_{p}: N \xrightarrow[\text { onto }]{1 ; 1} N$ such that $f_{p}\left(F_{3}^{-1}(i)\right)=F_{p}^{-1}\left(f_{p}(i)\right)$. So Proposition 2 holds.

References

[1] Zdenek Frolik: Fixed points of maps of βN. Bull. Amer. Math. Soc., 74, 187-191 (1968).
[2] Thomas Jech and Karel Prickry: On projections of finitely additive measures (preprint).
[3] Mary Ellen Rudin: Partial orders on the types of βN. Trans. Amer. Math. Soc., 155, 353-362 (1972).

