19. Finitely Additive Measures on N

By Masahiro YASUMOTO

Department of Mathematics, Nagoya University

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1979)

1. Introduction. In this paper, we improve the theorem of Jech and Prikry [2] on projections of finitely additive measures. Let Ndenote the set of all natural numbers. A (finitely additive) measure on N is a function $\mu: P(N) \rightarrow [0, 1]$ such that $\mu(\phi) = 0$, $\mu(N) = 1$ and if Xand Y are disjoint subsets of N, then $\mu(X \cup Y) = \mu(X) + \mu(Y)$. μ is nonprincipal if $\mu(E) = 0$ for every finite set $E \subset N$. Let $F: N \rightarrow N$ be a function. If μ is a measure on N, then $\nu = F^*(\mu)$ (the projection of μ by F) is the measure defined by $\nu(X) = \mu(F^{-1}(X))$.

Theorem (Jech and Prikry). There exist a measure μ on N and a function $F: N \rightarrow N$ such that

a) $F^{*}(\mu) = \mu$,

b) if $X \subseteq N$ is such that F is one-to-one on X, then $\mu(X) \leq \frac{1}{2}$.

A measure is two-valued if the values is $\{0, 1\}$. The theorem of Jech and Prikry contrasts with the following theorem concerning two-valued measure (Frolik [1] and Rudin [3]):

If μ is a two-valued measure and $F: N \rightarrow N$ is such that $F^*(\mu) = \mu$, then F(x) = x on a set of measure 1.

In this paper we prove the following

Theorem. There exist a measure μ and a function $F: N \rightarrow N$ such that

a) $F^{*}(\mu) = \mu$,

b) if $X \subseteq N$ is such that F is one-to-one on X, then $\mu(X) = 0$.

2. Sketch of the proof. We shall now state two results, to be proved in the following sections. We shall indicate how Theorem follows from them.

Proposition 1. For any prime p, there exist a function $F_p: N \rightarrow N$ and a finitely additive measure η_p such that

1) $F_p^*(\eta_p) = \eta_p$,

2) if $X \subseteq N$ is such that F_p is one-to-one on X, then $\eta_p(X) \leq 1/(p-1)$.

Proposition 2. There exists a function $f_p: N \xrightarrow{1; 1}_{\text{onto}} N$ such that $f_p F_s^{-1} = F_p^{-1} f_p$ where F_s and F_p are the functions in Proposition 1.

We let $F = F_3$ and $\lambda_p(X) = \eta_p(f_p(X))$ where $f_p(X) = \{f_p(x) | x \in X\}$.

Since f_p is one-to-one and onto, λ_p is a finitely additive measure.

- First we prove
- 3) $F^*(\lambda_p) = \lambda_p$,

4) if $X \subseteq N$ is such that F is one-to-one on X, then $\lambda_p(X) \leq 1/(p-1)$.

Since f_p is one-to-one and onto, 4) holds by 2) because if F is one-to-one on X, then F_p is one-to-one on $f_p(X)$. By 1), for any $X \subseteq N$, $\eta_p(X) = \eta_p(F_p^{-1}(X))$. Therefore $\lambda_p(X) = \eta_p(f_p(X)) = \eta_p(F_p^{-1}(f_p(X))) = \eta_p(f_p(F^{-1}(X))) = \lambda_p(F^{-1}(X))$ by Proposition 2. Then 3) follows. It is important that in 3) and 4) F does not depend on p.

Let $\{a_n | n \in N\}$ be a bounded sequence of real numbers, and ν be a two-valued measure. Then there exists a unique real number a, which we denote by $a = \lim_{\nu} a_n$, such that for any $\varepsilon > 0$, $\nu(\{n | |a - a_n| < \varepsilon\}) = 1$.

Let p_n be the *n*-th prime number. By letting $\mu(X) = \lim_{\nu} \lambda_{p_n}(X)$, we get a theorem. Because μ is obviously a finitely additive measure, $\mu(X) = \lim_{\nu} \lambda_{p_n}(X) = \lim_{\nu} \lambda_{p_n}(F^{-1}(X)) = \mu(F^{-1}(X))$ and if F is one-to-one on X, then $\mu(X) = \lim_{\nu} \lambda_{p_n}(X) \leq \lim_{\nu} 1/(p_n - 1) = 0$.

3. Proof of Proposition 1. Original idea is due to Jech and Prikry. For each $X \subseteq N$, we define X(n) = "the number of elements of $X \cap \{1, 2, 3, \dots, n\}$ " and $\mu_0(X) = \lim_{\nu} X(n)/n$. Obviously $\mu_0(X) = \mu_0(X+1)$ and $\mu_0(kN) = 1/k$.

Let $\mu_n(X) = \frac{1}{n} \sum_{k=0}^{n-1} p^k \mu_0(p^k X)$ and $\eta_p(X) = \lim_{k \to 0} \mu_n(X)$. It is easily

checked that η_p is a finitely additive measure and $\eta_p(X) = \eta_p(X+1)$. We will show

5)
$$\eta_p(pX) = \frac{1}{p} \eta_p(X).$$

For each $n \geq 1$, we have

6)
$$|\mu_n(X) - p\mu_n(pX)| = \left| \frac{1}{n} \sum_{k=0}^{n-1} p^k \mu_0(p^k X) - \frac{p}{n} \sum_{k=0}^{n-1} p^k \mu_0(p^{k+1} X) \right|$$

 $= \frac{1}{n} |\mu_0(X) - p^n \mu_0(p^n X)| \le \frac{1}{n},$

because $\mu_0(X) \leq 1$ and $\mu_0(p^n X) \leq \mu_0(p^n N) = 1/p^n$. Applying \lim_{ν} to 6), we get 5).

We define $F_p(m) = k$ where $m = p^i(kp - j)$ for some *i* and $1 \le j < p$. For any $i=0, 1, 2, \cdots$ and $j=2, 3, 4, \cdots, p-1$, let $S_j^i = \{p^i(kp - j) | k = 1, 2, 3, \cdots\}$, $S_j = \bigcup_{i=0} S_j^i$, $T^i = \{p^i(kp - 1) | k = 1, 2, 3, \cdots\}$, and $T = \bigcup_{i=0} T^i$.

Define a function $G: \bigcup_{2 \le j < p} S_j \rightarrow T$ as $G(p^i(kp-j)) = p^i(kp-1)$.

Since $T^0, T^0-1, \dots, T^0-p+1$ are mutually disjoint and their union is $N, \eta_p(T^0) = 1/p$. Therefore $\eta_p(S_j^i) = \eta_p(T^i - p^i(j-1)) = \eta_p(T^i) = \eta_p(p^iT^0)$ $= 1/p^{i+1}$. We show $\eta_p(S_j) = \eta_p(T) = 1/(p-1)$. For S_j^i, T^i are mutually disjoint and $\bigcup_{i=0}^{n} T^{i} \subset T \subset N - \bigcup_{j=2}^{p-1} \bigcup_{i=0}^{n} S_{j}^{i}$ then $\sum_{i=0}^{n} \frac{1}{p^{i+1}} \leq \eta_{p}(T) \leq 1 - (p-2)$ $\times \sum_{i=0}^{n} \frac{1}{p^{i+1}}$. Let $p \to \infty$, we have $\eta_{p}(T) = 1/(p-1)$. Similarly $\eta_{p}(S_{j}) = 1/(p-1)$.

Remark. $\eta_p(S_j) = \sum_{i=0}^{\infty} \eta_p(S_j^i)$ and $\eta_p(T) = \sum_{i=0}^{\infty} \eta_p(T^i)$.

Lemma 1. Let η be a finitely additive measure on N and $A = \bigcup_{i=0}^{\infty} A_i$ (disjoint union). If $\eta(A) = \sum_{i=0}^{\infty} \eta(A_i)$, then for any $X \subseteq N$, $\eta(X \cap A)$ $= \sum_{i=0}^{\infty} \eta(X \cap A_i).$

Proof. Since A_i are mutually disjoint and

$$\bigcup_{i=0}^{n} (X \cap A_i) \subset (X \cap A) \subset \left(\bigcup_{i=0}^{n} (X \cap A_i) \cup \bigcup_{i=n+1}^{n} A_i\right),$$

$$\sum_{i=0}^{n} \eta(X \cap A_i) \leq \eta(X \cap A) \leq \sum_{i=0}^{n} \eta(X \cap A_i) + \sum_{i=n+1}^{n} \eta(A_i).$$

By letting $n \rightarrow \infty$, Lemma 1 follows because $\sum_{i=n+1}^{\infty} \eta(A_i)$ tends to 0.

Now we prove

7) $F_p^*(\eta_p) = \eta_p$.

We will show $\eta_p(X) = \eta_p(F_p^{-1}(X))$ for any $X \subseteq N$. Let $A_n = T^n \cup \bigcup_{j=2}^{p-1} S_j^n$ and $B_n = \bigcup_{k=0}^n A_k$. The sets A_n are pairwise disjoint and $\eta_p(A_n) = (p-1)/p^{n-1}, \ \eta_p(B_n) = 1 - 1/p^{n-1}$. It follows from the definition of F_p that for each $n \in N$, $F_p^{-1}(X) \cap A_n = \bigcup_{j=1}^{p-1} p^n(pX-j)$. Consequently, if we denote $a = \eta_p(X)$, then

$$\eta_p(F_p^{-1}(X) \cap B_n) = a \left(1 - \frac{1}{p^{n+1}}\right) \text{ and }$$
$$\eta_p(B_n - F_p^{-1}(X)) = (1 - a) \left(1 - \frac{1}{p^{n+1}}\right).$$

Now if *n* tends to infinity, $\eta_p(F_p^{-1}(X)) = a$ which proves 7). Next we show

8) if $X \subseteq N$ is such that F_p is one-to-one on X, then $\eta_p(X) \leq 1/(p-1)$. By Lemma 1 and Remark,

$$\eta_p(X \cap S_j) = \sum_{i=0}^{\infty} \eta_p(X \cap S_j^i) = \sum_{i=0}^{\infty} \eta_p(X \cap S_j^i + (j-1)3^i) \\ = \sum_{i=0}^{\infty} \eta_p(G(X \cap S_j^i)) = \sum_{i=0}^{\infty} \eta_p(G(X \cap S_j^i) \cap T_j) = \eta_p(G(X \cap S_j)).$$

Let $Y = (X \cap T) \cup \bigcup_{j=2}^{p-1} G(X \cap S_j)$. Since F_p is one-to-one on $X, X \cap T$ and $G(X \cap S_j)$ $(j=2, 3, \dots, p-1)$ are pairwise disjoint. Then $Y \subseteq T$ and

No. 3]

 $\eta_p(X) = \eta_p(Y) \leq \eta_p(T) = 1/(p-1).$

Now by 7) and 8), Proposition 1 follows.

4. Proof of Proposition 2. Let us start with the proof of the following

Lemma 2. Let $N = \bigcup_{i=1}^{\infty} N_i = \bigcup_{j=1}^{\infty} M_j$ (disjoint union), for all *i* and *j* $|N_i| = |M_j|$, $1 \in N_1 \cap M_1$ and for all $n, n \in \bigcup_{i < n} N_i$ and $n \in \bigcup_{j < n} M_j$. Then there exists a function $f: N \xrightarrow{1; 1 \atop \text{onto}} N$ such that $f(N_n) = M_{f(n)}$.

Proof. We define f(i) for $i \in N_n$ by induction on n such that f is one-to-one and $f(N_n) = M_{f(n)}$.

We first put f(1)=1 and f to map N_1 one-to-one onto M_1 . Then $f(N_1)=M_{f(1)}$ and f is one-to-one. If we define f(i) for $i \in N_k$ (k < n) such that $f(N_k)=M_{f(k)}$ and f is one-to-one on $\bigcup_{k < n} N_k$, then f(n) is already defined because $n \in \bigcup_{k < n} N_k$. We take f(i) for $i \in N_n$ such that f maps N_n one-to-one onto $M_{f(n)}$. Then $f(N_k)=M_{f(k)}$ for $k \le n$ and f is one-to-one on $\bigcup_{k < n} N_k$.

We must prove f is onto. If not, we pick the least x such that $x \in N - f(N)$. Then for some y < x, $x \in M_y$. Since y < x, there is a z such that f(z) = y and therefore $x \in M_y = f(N_z)$. So $x \in f(N)$. This contradiction proves Lemma 2.

Now we return to the proof of Proposition 2. Let $N_i = F_3^{-1}(i)$ and $M_j = F_p^{-1}(j)$. By Lemma 2, there is a function $f_p: N \xrightarrow{1; 1}_{\text{onto}} N$ such that $f_p(F_3^{-1}(i)) = F_p^{-1}(f_p(i))$. So Proposition 2 holds.

References

- [1] Zdenek Frolik: Fixed points of maps of βN . Bull. Amer. Math. Soc., 74, 187–191 (1968).
- [2] Thomas Jech and Karel Prickry: On projections of finitely additive measures (preprint).
- [3] Mary Ellen Rudin: Partial orders on the types of βN . Trans. Amer. Math. Soc., 155, 353-362 (1972).

84