76. Poisson Transformations on Affine Symmetric Spaces^{*}

By Toshio OSHIMA**)

(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1979)

1. Introduction. Let G be a connected real semisimple Lie group with finite center, σ any involutive analytic automorphism of G, and H any closed subgroup which lies between the totality G^{σ} of fixed points of σ and the identity component of G^{σ} . Then the homogeneous space G/H is an affine symmetric space. It is known that any eigenfunction of all invariant differential operators on a Riemannian symmetric space of the noncompact type can be represented by the Poisson integral of a hyperfunction on its maximal boundary, which was conjectured by Helgason [2] and completely solved by [3]. In this note we define a generalization of the Poisson integral on G/H and extend the result in [3] to the case of G/H. For example, by the involution $(g, g') \mapsto (g', g)$ of $G \times G$, the group G itself can be regarded as an affine symmetric space and then our result gives integral representations of simultaneous eigenfunctions of biinvariant differential operators on G. If G/Hsatisfies some conditions, this problem was studied by [6] (cf. also [5]). An extended version of this note is to appear later.

2. Preliminary results. We fix a Cartan involution θ of G commuting with σ (cf. [1] for the existence of θ) and also denote by σ and θ the corresponding involutions of the Lie algebra g of G. Let g = t + p(resp. g = h + q) be the decomposition of g into +1 and -1 eigenspaces for θ (resp. σ). Let α be a maximal abelian subspace of $\mathfrak{p} \cap \mathfrak{q}$, $\mathfrak{a}_{\mathfrak{p}}$ a maximal abelian subspace of \mathfrak{p} containing \mathfrak{a} , and $\tilde{\mathfrak{j}}$ a Cartan subalgebra of g containing both a_{μ} and a maximal abelian subspace of $\mathfrak{m} \cap \mathfrak{q}$, where m denotes the centralizer of a_{i} in f. Furthermore we put $j=\tilde{j}\cap q$ and $t=j \cap f$. For a linear subspace b of g, b, denotes the complexification of b. If b is a subalgebra, U(b) denotes the universal enveloping algebra of \mathfrak{b}_c . Let Ad (resp. ad) denote the adjoint representation of G (resp. g_c) on g_c or U(g). For a linear subspace \tilde{a} of \tilde{j} , \tilde{a}^* denotes the dual space of \tilde{a} and \tilde{a}_{c}^{*} the complexification of \tilde{a}^{*} . Then we put $g_{c}(\tilde{a}; \lambda) = \{X \in g_{c}; \lambda\}$ $ad(Y)X = \lambda(X)$ for all $Y \in \tilde{a}$ for any λ in \tilde{a}_e^* and moreover $\Sigma(\tilde{a}) = \{\lambda \in \tilde{a}_e^*\}$ $-\{0\}; \mathfrak{g}_{c}(\tilde{\mathfrak{a}}; \lambda) \neq \{0\}\}.$ By the Killing form \langle , \rangle of the complex Lie algebra g_c , we identify j_c^* and j_c , and therefore \tilde{a}_c^* is identified with a subspace of j_e^* . Let K denote the analytic subgroup of G cor-

^{*)} This work is supported in part by National Science Foundation.

^{**&#}x27; The Institute for Advanced Study, Princeton, NJ, USA and Department of Mathematics, College of General Education, University of Tokyo, Tokyo, Japan.

responding to \mathfrak{k} , and M (resp. M^*) the centralizer (resp. the normalizer) of $\mathfrak{a}_{\mathfrak{p}}$ in K. The quotient group M^*/M is the Weyl group of the restricted root system $\Sigma(\mathfrak{a}_{\mathfrak{p}})$, which we denote by $W(\mathfrak{a}_{\mathfrak{p}})$.

Lemma 1. i) j is a maximal abelian subspace of q.

ii) $\Sigma(j)$ and $\Sigma(\alpha)$ satisfy the axiom of root systems. Let W(j) and $W(\alpha)$ denote the corresponding Weyl groups.

iii) Put $W(j)_{\theta} = \{w \in W(j) ; w \mid_{\alpha} = id\}, W^{\theta}(j) = \{w \in W(j) ; w(\alpha) = \alpha\}, W(\alpha_{\mathfrak{p}})_{\sigma} = \{w \in W(\alpha_{\mathfrak{p}}) ; w \mid_{\alpha} = id\}, W^{\sigma}(\alpha_{\mathfrak{p}}) = \{w \in W(\alpha_{\mathfrak{p}}) ; w(\alpha) = \alpha\} and W(\alpha_{\mathfrak{p}} ; H) = (M^{*} \cap H)/(M \cap H).$ Then $W(\alpha_{\mathfrak{p}})_{\sigma} \subset W(\alpha_{\mathfrak{p}} ; H) \subset W^{\sigma}(\alpha_{\mathfrak{p}}) and the quotient groups W^{\theta}(j)/W(j)_{\theta} and W^{\sigma}(\alpha_{\mathfrak{p}})/W(\alpha_{\mathfrak{p}})_{\sigma} are naturally identified with W(\alpha).$

iv) We can define a system of compatible orderings of the root systems $\Sigma(\tilde{j}), \Sigma(\mathfrak{a}_{\mathfrak{p}}), \Sigma(j)$ and $\Sigma(\mathfrak{a})$. Let $\Sigma(\tilde{j})^+, \Sigma(\mathfrak{a}_{\mathfrak{p}})^+, \Sigma(j)^+$ and $\Sigma(\mathfrak{a})^+$ denote the corresponding sets of all positive roots.

Let ρ denote half the sum of the elements of $\Sigma(j)^+$ and D(G/H) the *C*-algebra of all *G*-invariant differential operators on G/H. For any $D \in U(\mathfrak{g})$, we define $D_{\mathfrak{i}} \in U(\mathfrak{j})$ so that $D-D_{\mathfrak{i}} \in \sum_{\alpha \in \Sigma(\mathfrak{j})^+} \mathfrak{g}_{\mathfrak{c}}(\mathfrak{j}; -\alpha)U(\mathfrak{g})$ $+ U(\mathfrak{g})\mathfrak{h}$ and we denote by $\mathfrak{i}(D)$ the image of $D_{\mathfrak{i}}$ under the automorphism of $U(\mathfrak{j})$ which maps X to $X-\rho(X)$ for every $X \in \mathfrak{j}$. Putting $U(\mathfrak{g})^H = \{D \in U(\mathfrak{g}); Ad(h)D = D \text{ for any } h \in H\}$, we have

Lemma 2. The map $\tilde{\iota}$ and the natural identification $D(G/H) \simeq U(\mathfrak{g})^H/U(\mathfrak{g})\mathfrak{h} \cap U(\mathfrak{g})^H$ induce the surjective C-algebra isomorphism

$$: D(G/H) \xrightarrow{\sim} I(\mathfrak{j}),$$

where I(j) denotes the set of all W(j)-invariants in U(j).

Extending any $\nu \in j_c^*$ to an algebra homomorphism of U(j) onto C, we define a system of differential equations on G/H:

 $\mathcal{M}_{\nu}: (D - \nu(\iota(D)))u = 0$ for all $D \in D(G/H)$.

3. Eigenspaces and principal series. For a real analytic manifold U we denote by $\mathcal{B}(U)$ (resp. $\mathcal{D}'(U)$, $\mathcal{C}^{\infty}(U)$, $\mathcal{A}(U)$) the space of Sato's hyperfunctions (resp. Schwartz' distributions, indefinitely differentiable functions, real analytic functions) on U. Then $\mathcal{B}(U) \supset \mathcal{D}'(U) \supset \mathcal{C}^{\infty}(U) \supset \mathcal{A}(U)$. Each $x \in G$ acts on the linear space $\mathcal{B}(G)$ by the left translation

 $au_x : f(g) \mapsto (au_x f)(g) = f(x^{-1}g)$ for $f \in \mathcal{B}(G)$ and $\mathcal{B}(G/H)$ is identified with the *G*-submodule $\{f \in \mathcal{B}(G); f(gh) = f(g) \}$ for all $h \in H\}$ of $\mathcal{B}(G)$. We define a Fréchet space

 $\mathcal{C}_*(G/H) = \{ f \in \mathcal{C}^{\infty}(G/H) ; \|f\|_{D,j} < \infty \text{ for any } (D,j) \in U(\mathfrak{g}) \times Z \}$ with the seminorms $\|\|_{D,j}$ and the dual space $\mathcal{C}'_*(G/H)$ of $\mathcal{C}_*(G/H) \otimes d\bar{g}$, where any $D \in U(\mathfrak{g})$ is regarded as a left-invariant differential operator on $G, \|f\|_{D,j} = \sup_{(k,X) \in K \times \mathfrak{a}} |(Df)(k \exp X)| \exp(j\langle X, X \rangle^{1/2})$ and $d\bar{g}$ is an invariant measure on G/H. We denote by $\mathcal{F}(G/H; \mathcal{M}_{\nu})$ the space of all solutions of \mathcal{M}_{ν} in $\mathcal{F}(G/H)$, where $\mathcal{F} = \mathcal{B}, \mathcal{D}', \mathcal{C}'_*, \mathcal{C}^{\infty}$ or \mathcal{A} .

We put $n = g \cap \sum_{\alpha \in \Sigma(a_p)^+} g_c(a_p; \alpha)$. Let N, A and A_p denote the an-

alytic subgroups of G corresponding to n, a and a_{ν} , respectively. We define a parabolic subgroup $P_{\sigma} = \bigcup_{w \in W(a_{p})_{\sigma}} MA_{\nu}NwN$. Let $P_{\sigma} = M_{\sigma}A_{\sigma}N_{\sigma}$ be the Langlands decomposition of P_{σ} such that $M_{\sigma}A_{\sigma}$ centralizes a. Let \mathfrak{m}_{σ} denote the Lie algebra of M_{σ} and let $\mathfrak{m}_{\sigma} = \mathfrak{m}(\sigma) + \mathfrak{g}(\sigma)$ be the decomposition of \mathfrak{m}_{σ} into the direct sum of a compact reductive Lie algebra $\mathfrak{m}(\sigma)$ and a noncompact semisimple Lie algebra $\mathfrak{g}(\sigma)$. Let $M(\sigma)_{0}$ and $G(\sigma)$ denote the analytic subgroups of G corresponding to $\mathfrak{m}(\sigma)$ and $\mathfrak{g}(\sigma)$, respectively. Putting $M(\sigma) = M(\sigma)_{0}Ad^{-1}(Ad(K) \cap \exp ad(\sqrt{-1}a_{\nu}))$, we have

Lemma 3. $M(\sigma) \subset M$, $G(\sigma) \subset H$ and $M_{\sigma} = M(\sigma)G(\sigma)$.

Let w_1, w_2, \cdots, w_r be representatives of the factor set

$$W(\mathfrak{a}_{\mathfrak{p}}; H) \setminus W^{\sigma}(\mathfrak{a}_{\mathfrak{p}}),$$

where $r = [W^{\sigma}(\mathfrak{a}_{\mathfrak{p}}) \colon W(\mathfrak{a}_{\mathfrak{p}}; H)]$. We choose representatives \overline{w}_{i} of w_{i} in M^{*} so that $\mathfrak{m}_{\sigma} \cap Ad(\overline{w}_{i}^{-1})\mathfrak{h} = \mathfrak{m}_{\sigma} \cap \mathfrak{h}$ $(i=1, \dots, r)$. We put $M(\sigma)_{i} = M(\sigma)$ $\cap \overline{w}_{i}^{-1}H\overline{w}_{i}, Q_{\sigma} = G(\sigma)A_{\sigma}N_{\sigma}$ and $P_{\sigma,i} = M(\sigma)_{i}Q_{\sigma}$. Let $\widehat{M(\sigma)^{i}}$ denote the set of all equivalence classes of irreducible unitary representations of $M(\sigma)$ with non-zero $M(\sigma)_{i}$ -fixed vectors. For a $\delta \in \widehat{M(\sigma)^{i}}$, let χ_{δ} be the corresponding character and let $\overline{\delta} \in (\mathfrak{m}(\sigma) \cap \tilde{j})_{c}^{*}$ be the dominant weight of the corresponding representation of $\mathfrak{m}(\sigma)$ which is compatible with the orderings in Lemma 1. Then $\overline{\delta} \in \mathfrak{t}_{c}^{*}$. Conversely, for a $\Lambda \in \mathfrak{t}_{c}^{*}$, we put $\mathfrak{W}(\Lambda) = \{(\delta, i); i=1, \dots, r, \delta \in \widehat{M(\sigma)^{i}} \text{ and } \overline{\delta} + \rho|_{\mathfrak{t}} \in W(\mathfrak{j})_{\delta}(-\Lambda)\}$. Last in this section we define idempotent maps

$$p_{\delta}^{i}: \mathcal{F}(G) \longrightarrow \mathcal{F}(G)$$

$$\overset{\cup}{f(g)} \longmapsto \overset{\cup}{(p_{\delta}^{i}f)(g)} = \chi_{\delta}(e) \int_{\mathcal{M}(\sigma)_{\delta}} \int_{\mathcal{M}(\sigma)} \chi_{\delta}(m_{i}m) f(gm) dm_{i} dm$$

$$= dular$$

and G-modules

 $\begin{aligned} & \mathcal{F}(G/Q_{\sigma}; L_{\lambda}) = \{ f \in \mathcal{F}(G); f(gxan) = f(g) \exp((\lambda - \rho)(\log a)) \\ & \text{ for all } g \in G, x \in G(\sigma), a \in A_{\sigma} \text{ and } n \in N_{\sigma} \}, \\ & \mathcal{F}(G/P_{\sigma,i}; L_{\lambda})_{\delta} = \{ f \in \mathcal{F}(G/Q_{\sigma}; L_{\lambda}); p_{\delta}^{i}f = f \}, \end{aligned}$

where $i \in \{1, \dots, r\}$, $\delta \in \widehat{M}(\sigma)^i$, $\mathcal{F} \in \{\mathcal{B}, \mathcal{D}', \mathcal{C}^{\infty} \text{ and } \mathcal{A}\}$ and $\lambda \in \mathfrak{a}_c^*$. In this note any measure on any compact group is the Haar measure so normalized that the total measure equals one. We call every $\mathcal{F}(G/P_{\sigma,i}; L_{\lambda})_{\delta}$ a function space of principal series for G/H.

4. Poisson transformations. To define Poisson kernels we prepare the following lemma which easily follows from [4].

Lemma 4. i) $\bigcup_{i=1}^{r} H\overline{w}_i P_{\sigma}$ is a disjoint union of the open subsets $H\overline{w}_i P_{\sigma}$ of G and the union is dense in G.

ii)
$$(\overline{w}_i^{-1}H\overline{w}_i) \cap (M(\sigma)AN_{\sigma}) = M(\sigma)_i$$
 for $i = 1, \dots, r$.
For $i = 1, \dots, r$, $\delta \in \widehat{M(\sigma)^i}$, $\lambda \in \mathfrak{a}_c^*$ and $g \in G$, we put
 $h_{\sigma}^i(\delta, \lambda; g) = \begin{cases} \int_{M(\sigma)_i} \chi_{\delta}(m_i m) \exp((\lambda - \rho)(X)) dm_i \\ \text{if } g \in H\overline{w}_i m (\exp X)N_{\sigma} \text{ with } m \in M(\sigma) \text{ and } X \in \mathfrak{a}, \\ 0 & \text{if } g \in H\overline{w}_i P_{\sigma}. \end{cases}$

T. OSHIMA

Lemma 5. The functions $h_{\alpha}^{i}(\delta, \lambda; g)$ on G are continuous when Re $\langle \lambda - \rho, \alpha \rangle > 0$ for all $\alpha \in \Sigma(\alpha)^{+}$. They can be meromorphically extended for all $\lambda \in \alpha_{c}^{*}$ as distributions on G. The extensions will be denoted by the same notation and called Poisson kernels.

Then partial Poisson transformations $\mathcal{D}^{i}_{\sigma,\delta,\lambda}$ of $\mathcal{B}(G/Q_{\sigma}; L_{\lambda})$ are defined by

$$(\mathscr{Q}^{i}_{\sigma,\delta,\lambda}f)(g) = \int_{K} f(k)h^{i}_{\sigma}(\delta,-\lambda;g^{-1}k)dk \quad \text{for } f \in \mathscr{B}(G/Q_{\sigma};L_{\lambda}).$$

5. The main theorem. We put $\mathfrak{A} = \{\Sigma n_{\alpha}\alpha; \alpha \in \Sigma(j) \text{ and } n_{\alpha} \in \mathbb{Z}\}, \mathfrak{B} = \{\beta \in \Sigma(j); \beta|_{t} = 0 \text{ and } \mathfrak{g}_{c}(j;\beta) \cap ((\mathfrak{f} \cap \mathfrak{q}) + (\mathfrak{h} \cap \mathfrak{p})) \neq \{0\}\} \text{ and for each root } \beta \text{ in } \mathfrak{B} \text{ we choose a root vector } X_{\beta} \text{ in } \mathfrak{g}_{c}(j;\beta) \cap ((\mathfrak{f} \cap \mathfrak{q}) + (\mathfrak{h} \cap \mathfrak{p})) \text{ so that } 2\langle X_{\beta}, \theta(X_{\beta}) \rangle = -\langle \beta, \beta \rangle.$ For a complex abelian vector space c of \mathfrak{f}_{c} , we put $\mathfrak{C}(c) = \{\mu|_{c}; \mu \text{ is a weight of an irreducible unitary representation of K with non-zero <math>(K \cap H \cap M_{\sigma})$ -fixed vectors, where μ belongs to the dual of a maximal complex abelian vector space of \mathfrak{f}_{c} containing c}. Then we can state our theorem.

Theorem 6. i) The following conditions for ν in j_c^* are equivalent:

- (1) $\mathcal{A}(G/H; \mathcal{M}_{\nu}) = \{0\},$
- (2) $\mathscr{B}(G/H; \mathscr{M}_{\nu}) = \{0\},\$
- (3) $\mathfrak{W}(w_{\nu}|_{t}) = \phi$ for any $w \in W(j)$.

ii) Assume an element $\nu = (\Lambda, \lambda) \in j_c^*$ ($\Lambda \in t_c^*$, $\lambda \in \mathfrak{a}_c^*$) satisfies

(A. 0) λ is not a pole of $h^i_{\sigma}(\delta, -\lambda; g)$ for any $(\delta, i) \in \mathfrak{W}(\Lambda)$,

(A. 1) $-2\langle \lambda, \alpha \rangle / \langle \alpha, \alpha \rangle \in N \equiv \{1, 2, 3, \cdots\}$ for any $\alpha \in \Sigma(\alpha)^+$,

(A. 2) $w(\nu - \rho)|_t \neq \alpha|_t + \mu|_t$ for any $(\alpha, \mu, w) \in \mathfrak{A} \times \mathfrak{S}(\mathfrak{t}_c) \times (W(\mathfrak{z}) - W^{\theta}(\mathfrak{z})),$

(A. 3) $\langle w\lambda, \beta \rangle \neq \langle \alpha + \rho, \beta \rangle + \sqrt{-1} \langle \mu, X_{\beta} - \sigma(X_{\beta}) \rangle$ for any $(\alpha, \beta, w) \in \mathfrak{A} \times \mathfrak{B} \times W^{\theta}(\mathfrak{j})$ and any $\mu \in \mathfrak{C}(C(X_{\beta} - \sigma(X_{\beta})))$. Then the Poisson transformation

$$\mathscr{D}_{\sigma,\nu}: \bigoplus_{\alpha,\nu} \mathscr{B}(G/P_{\sigma,i}; L_{\lambda})_{\delta} \longrightarrow \mathscr{B}(G/H)$$

defined by $\mathcal{P}_{\sigma,\nu}((f_{\delta,i})) = \sum \mathcal{P}_{\sigma,\delta,\lambda}^i f_{\delta,i} \ (f_{\delta,i} \in \mathcal{B}(G/P_{\sigma,i}; L_{\lambda})_{\delta})$ is a G-isomorphism of the direct sum of function spaces of principal series for G/H onto the eigenspace $\mathcal{B}(G/H; \mathcal{M}_{\nu})$ and induces a homeomorphism of $\bigoplus_{(i,i)\in\mathfrak{W}(A)} \mathcal{D}'(G/P_{\sigma,i}; L_{\lambda})_{\delta}$ onto $C'_*(G/H; \mathcal{M}_{\nu})$.

Here we remark that $\mathcal{M}_{\nu} = \mathcal{M}_{w\nu}$ for any $w \in W(j)$ and that there exists an open dense subset $(a_c^*)'$ of a_c^* such that every condition in Theorem 6 ii) holds if $\mathfrak{W}(\Lambda) \neq \phi$ and $\lambda \in (a_c^*)'$. Moreover, defining Poisson kernels by a suitable analytic continuation of linear combinations of $h_{i}^{t}(\delta, \lambda; g)$, we can omit the condition (A. 0).

The proof of Theorem 6 is based on the construction of the inverse of $\mathcal{P}_{\sigma,\nu}$, which is the map of taking the boundary values of eigenfunctions in $\mathcal{B}(G/H; \mathcal{M}_{\nu})$. This method of the proof is also used in [3] and [6]. By the way, if all the boundary values of an eigenfunction in $\mathscr{B}(G/H; \mathscr{M}_{\nu})$ vanish, the function must be zero. This implies the following

Remark 7. For any ν in j_c^* there exist closed *G*-invariant linear subspaces E_j $(j \in N)$ of $\mathcal{C}^{\infty}(G/H; \mathcal{M}_{\nu})$ and *G*-equivariant maps Φ_j of E_j to $\mathcal{B}(G/P_{\sigma,i_j}; L_{\lambda_j})_{\delta_j}$ with the kernel E_{j+1} , respectively, such that $E_1 = \mathcal{C}^{\infty}(G/H; \mathcal{M}_{\nu}) \supset \cdots \supset E_j \supset E_{j+1} \supset \cdots, E_j = \{0\}$ for a sufficiently large *j* and $\lambda_j - \rho|_t - \overline{\delta}_j \in \{w\nu; w \in W(j)\}.$

References

- M. Berger: Les espaces symétriques non compacts. Ann. Sci. Éc. Norm. Sup., 74, 85-177 (1957).
- [2] S. Helgason: A duality for symmetric spaces with applications to group representations. Adv. Math., 5, 1-154 (1970).
- [3] M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Oshima, and M. Tanaka: Eigenfunctions of invariant differential operators on a symmetric space. Ann. of Math., 107, 1-39 (1978).
- [4] T. Matsuki: The orbits of affine symmetric spaces under the action of minimal parabolic subgroups. J. Math. Soc. Japan, 31, 331-357 (1979).
- [5] T. Oshima and J. Sekiguchi: Boundary value problem on symmetric homogeneous spaces. Proc. Japan Acad., 53A, 81-83 (1977).
- [6] ——: Eigenspaces of invariant differential operators on an affine symmetric space (preprint).

No. 9]