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66. Studies on Holonomic Quantum Fields. IX

By Michio JIMBO
Research Institute of Mathematical Sciences, Kyoto University

(Communicated by K.Ssaku YOSIDA, M. J.A., Nov. 13, 1978)

In this note we shall give a symplectic version of the 2-dimen-
sional operator theory, previously expounded in the orthogonal case
[2], [5], [6]. Oi particular interest is the neutral theory discussed in
4. Corresponding to the bose field (a) [1], there arises a strongly

interacting fermi field gB(ol)--t((jgB+(b),(jgB_(ob)). These two fields (a)
and (a) are shown to share the same S-matrix in common, and their
r-functions are related to each other through simple formulas (34), (36),
(38)-(39) (cf. IV-(49) [2]).

We remark that the 1-dimensional Riemann-Hilbert problem [4],
[8] is also dealt with in the symplectic ramework.

We follow the notations used throughout this series [1]-[6].
The author wishes to express his heartiest thanks to Prof. M. Sato

and Dr. T. Miwa or many discussions and valuable suggestions.
1o Let W be an N-dimensional complex vector space equipped

with a skew-symmetric inner product (, . Let A(W) be the algebra
generated by W with the defining relation ww’--w’w=(w, w’}. De-
note by S(W) the symmetric tensor algebra over W. As in the orthog-
onal case [3], [7], the norm map

( 1 Nr A(W) S(W)
and the expectation value (a} of a A(W) are defined analogously, by
specifying a bilinear orm (w, w’)(ww’ on W such that
-(w’w}-(w, w’} (w, w’ e W).

Now let v, ..., v be a basis of W, and set K=((vv}), H=((v,
v})=K--tK. Consider an element g of the orm

N2 ) Nr (g)=(geply, p--,,=l R,vv=vRtv
with v=(vl, ..., v). Contrary to the orthogonal case, e/ no longer
belongs to S(W). So we let R--R e t.C[[t]], and regard g (resp. e
as an element of A(W)[[t]] (resp. S(W)[[t]]), the ormal power series
ring with coefficients in A(W) (resp. S(W)). The norm map (1) is
uniquely extended there. (This formulation is due to T. Miwa.) Most
o the ormulas in the orthogonal case are valid or g o the orm (2),
if we replace tK by --tK. We tabulate below ormulas corresponding
to (1.5.5)-(1.5.6), (1.5.7)-(1.5.8) and (1.4.6)-(1.4.7) of [7].

N=I3 ) Nr (wg)-- ,,, v(1 +RtK),c) (g)e
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Nr (gw)-(,z,= v(1 +RK)c).(ge
Nwhere w-,,= vc,.

_7_(4 ) g.v = vT).g
5 ) R(KKT)= T-- 1, T=(T).

(g=gg* det (1 +KR)
where * is defined in [1]. Let A=()-eA be such that ,-1 (,=1, ...,

W analogously as in [7]. Thenn) and define W(A)
6 ) Nr (g... g’)-(g’...

(g’ g’)-(g). .(g’) det (1--A(A)R)-/

=R(I_A(A)R)-,, p_#t
where Nr(g)-(g)e’/, =(v’,..., v),

R= ".. and A(A)-

Noiee he exonen --1/ of e determinant in (6), which differ from
he orhogonal ease by sign.

Z. Le (), *() denote he creation (<0)-annihilaion (>0)
oeraors of complex ree bose field. heir commutation relations
and expectation values read

7 ) ([(u),
\[*(u), (u’)]

( 8

For e C we set

[(u), *(u’)][*(u),*(u’)]/=(1
((u)*(u’))

1)2 ul (u+ u’)

1)2u+(u+ u’).

( 9 ) ,(x)-Jd__u(0 + iu),e-,(: + + )(u)

* (x)=du(O+ iu)te-*’(-u+ + -’)*(u).

In the case /--0 we write (9) simply as (x) and *(x), respectively.
Set further

(10) p(a;/)-----2

R(, ’ l) . sin rd ,_i0 + ’--i’
and define 9( 1), 9g(; l) and 9,*( l) as follows.
(11) Nr (9( D)=exp (0( 1)/)

Nr (gg(e ;/)) =v(a) exp (p( l)/.)
Nr (gg*( ;/))=(e) exp (0( 1)/.).

Notiee that if l=O, l’=O (11) reduce to 1, (e) and *(), respectively.
The local expansions corresponding to VII-(6), (7) are valid. Assum-
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ing Z we have
(a" 1)).v_ /[a](12) Nr ((x)B(a ;/))= ,_-0 Nr

+
Nr (*(x)(a 1))=7=o Nr * [a](+(a 1)).v+

+=0 Nr (__(a 1)).v++[a],
(13) Nr ((x)?(a 1))- 1 Nr (a(a 1)).(v_,[a]--v[a])

2 sin l’

+ Nr ((x)(a 1)). (a),
Nr (*(x)g(a ;/))= 1 Nr (a(a 1)). (v_.[a]- v[a])

2 sin l’

+ Nr (*(x)(a l)). t,(a).
Here we have set vt[a]-v(--(x--a)-+iO, (x--a)+--iO), etc. In (12)
and (13), if the order of product is reversed as (a;1)(x) and so
forth, we are only to replace the boundary values (x--a);iO by
(x--a);iO (compare the case of fermion VII-(7) where a change
in sign should be incorporated). We note in particular the relations

(14) ()Pf*( ;/)=
2 sin

f( ;/)’-[]--m-O(---)f(; l)

v_.[]+...) +(terms involving v.[], 0),

*()p( 1)-
2 sn
v.[e] +. .) + (terms involving v.[], 0).

As a resul of (12), (1) he oerators (11) enjoy the following com-
mutation relations wih ghe free field (), *(z) for spaeelike separa-
tion of and "

(x)p(a l) (x+ > a+, x- <a-)
(15) (a 1)(x)=[et(x)(a l) (x+ <a+, x->a-)

B* l’for (a ;/)=z(a l) or t, (a l) with mod Z,

*(x)(a l) (x + >a+, x- <a-)
(16) (a 1)*(x) [e_2.(x)(a l) (x+ <a+, x- > a-)
for (a;1)=z(a;1) or (a;/) with l’--1 mod Z.

3. Making use of the operators in 2 we now introduce our wave
functions, in the Minkowski space-time X’. For v-l, ..., n we set
(17) rs=v0(x*, x; L)=<*(x*)(a l)...s(a ;/=)(x)>

r=v(x, L)=2 sin =l<s(a l) .. (a, l)... (a= ;/)(x)>
where r-ra=(L)=<(a;l)...s(a;l)> denotes the r-function.
These functions (17) are analytically prolongable to the subdomain of
(Xe)+ (and in particular that of (X)=+2) defined by Im (x*--a)
<0, Im (a,-a)<0 (ltt<vn) and Im (x-a) >0, to result in the
canonical basis vo(L), v(L) in VIII- 1, 2, respectively. In the sequel
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the vacuum expectation values (17), TBn etc. are often confused with
their Euclidean continuations. From (14) we have
(18) a(L)- --m-l@a log r.(L) (,--1, ..., n)
in the notation of VIII. In view of the characterization of these
Euclidean wave functions (cf. VIII-(5)), we see that the following re-
lations hold between the "fermi" and "bose" wave functions"
(19) i(*_(x*),(a l). "(an ln)+(x)/V,n(L)

(*(x*)(a l + 1/2)...(a l+ 1/2)(x)}/r(L+ 1/2)
(20) i(,(a ;/)... p[*(a ;/)...,(a, ;1,)/(x)}/r,(L)

(,(a, l + 1/2). "*ot+,/.(a l+ 1/2)
..(a l=+ 1/2)(x)}/r,(L+ 1/2).

On the other hand, from (18)and VIII-(21) the "fermi" and "bose"
r-functions rr(L)--((a l)...(a In)} and r(L+ 1/2) are them-
selves related through
(21) d log r=(L+ 1/2)= --d log rn(L) --w

where denotes the 1-form VIII-(20). For instance if n=2 we have

(22) =(t((tt)--sinh)--t-ltanh)dt/2
where t=2m la-a.l, l=l--l., and =(t) satisfies

(23) d 1 d I sinh 2+ (t/--) tanh sech .
dt t dt 2

Equation (23) is converted into a Painlev equation of the fifth kind by
the substitution y-tanh , x t. By the boundary conditions r.n,

Vn--*l ([a--a[-oo for all/,) (21) implies further that
(24) r,n(L+ 1/2). v(L)-- 1.

Introduction of the parameter A-(,) is carried out similarly as

in VII [5]. Let (")(u), *(")(u) (=1, ..., n) denote copies of (u), *(u).
The inner product (, } and the vacuum expectation value ( } of/-th
and ,-th copies are set equal to ],-, times the original ones, where

() ()we assume ]--1 (,--1, ...,n) as before. Define (x), q* (x),

()(a;/), p,()(a;/) and ;*()(a; l) by using ()(u), q*()(u) in place of

(u), *(u) respectively. We have then

(25) i(*_(,)(x*)()(a l). .qy)(a, 1,)(:)(x))/r,,(L A)

(*(,)(x*))(a l+ 1/2)
"(n)(an ;ln + 1/2)()(x)}/r,(L+ 1/2; A)

(26) i(p()(ai l) *()(a, l,). (F)(an ln)?)(x)}/Vn(L A)
"l

(()(a l + 1/2) *(") (a+/ l+ 1/2)
...(Bn)(an In 2[_ 1/2)()(x))/r,(L+ 1/2; A)

where rr(L; A) (7)(a; /1)’" "()(an ln) and r(L + 1/2; A)

()(a l + 1/2).. ()(a l+ 1/2) are related through

(27) r,(L+ 1/2; A)r(L A)=I.

4. In the special case 1-1/2, it is possible to construct operator
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theory based on neutral bose field (u). The field (a) is introduced
in I [1] along with f(a) and (a). We set further

(28) Nr ((a))= (d__u/0 / iu+e-’’-u//u-(u)).Nr ((a)).
From the definition, p(a)-t(+(a), o_(a)) transforms as a spinor. It
is shown that if a and a’ are mutually spacelike, then
(29) [B(a), B(a’)]- 0

[f(a), f,(a’)] + =0 (, ’= _).
Moreover the asymptotic fields for f(a) (= +_)

2 xO=t

-f(x) .oe-+ +-’))
exist and are calculated exactly. We find
(31) el+/- (u) (0 + iu)’(l/)(u)
where

(32) Nr ((u))=(u) exp (--2 f: du’_.__O(+__ (,u,-u’))/ (u’)(u’))
B

+satisfy the canonical anti-commutation relations p(u), (u’)]
--2=[ul (u+u’) or free ermion (cf. I-(2)[1]). As. in the case of
0(a), the asymptotic state vectors are related to the auxiliary ones
through
(33) (vac gx(ul)

+(u) t(u,) vac [-[ ,< e (+_ (u-u)) Ct(u)... Ct(u,) vac)
where t(u) (- u).

To sum up, ’(a)=t((a),_(a)) is a fermion field satisfying
Lorentz covariance, microcausality and asymptotic completeness, and
its S-matrix is given by S=(-)(-)/ where N denotes the total
particle-number operator.

Just as in the complex case, the relation with the Euclidean defor-
mation theory enables us to express the r-functions for .(a) and ’(a)
in a closed form. The analogue of (24) reads
(34) rBn "rFn /let cosh H
where r.n=((al)..-?(a)}, rF=(y(a)...f(a)}, and G--e-2H de-
note the corresponding solution of II-(18) [2]. The mixed r-functions
(35) ^I’’’’’Y <)B(I) B B

where ,,(a,) is placed in the ,,-th position for i:l, ..., m, are given
by (cf. IV-(49)[2])
(36) ’.’",TBn; , k" Bn;j,sl)J,lg=l,. ,m

Here
(37) " =" --f,/2m(a, a)TBn; + + TBn;. -g./2Tn; + TBn; +

with p:/:, and F=(f,). G-=e-(g"9. In particular the 2-point
functions are expressible in terms of the solution (t)=(t; 0, 1/=)
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in reference [9] of the equation (23) with/--0. Setting a-a2=te/2m
(t 0) we have
(38) rB2’ rF2---- cosh ((t)/2)

(39) ((+(al)+(a2) (+(al)_(a2)} (-- ie-4x’(t) --i sinh (t)
\(e_(al)+(a2) (_(a,)_(a.)/--\i sinh (t) ie,(t) ]rB2/2

where ’(t)--d___.
dt
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