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66. Studies on Holonomic Quantum Fields. IX

By Michio JiMBO

Research Institute of Mathematical Sciences, Kyoto University

(Communicated by Kosaku YosipaA, M. J. A., Nov. 13, 1978)

In this note we shall give a symplectic version of the 2-dimen-
sional operator theory, previously expounded in the orthogonal case
[2], [5],[6]. Of particular interest is the neutral theory discussed in
§4. Corresponding to the bose field ¢*(a) [1], there arises a strongly
interacting fermi field ¢®(a)="(p%(a), 9®(a)). These two fields ¢”(a)
and ¢®(a) are shown to share the same S-matrix in common, and their
r-functions are related to each other through simple formulas (34), (36),
(38)—(39) (cf. IV-(49) [2]).

We remark that the 1-dimensional Riemann-Hilbert problem [4],
[8] is also dealt with in the symplectic framework.

We follow the notations used throughout this series [1]-[6].

The author wishes to express his heartiest thanks to Prof. M. Sato
and Dr. T. Miwa for many discussions and valuable suggestions.

1. Let W be an N-dimensional complex vector space equipped
with a skew-symmetric inner product {(, >. Let A(W) be the algebra
generated by W with the defining relation ww’—w'w=<{w,w’>. De-
note by S(W) the symmetric tensor algebra over W. As in the orthog-
onal case [3], [7], the norm map

(1) Nr: A(W)—>S(W)
and the expectation value (a) of a ¢ A(W) are defined analogously, by
specifying a bilinear form (w,w’)—<{ww’y on W such that {ww’)
—wwy=<w, w> (w, w e W).

Now let vy, - - -, vy be a basis of W, and set K=({v,v,)), H=({v,,
v,5)=K—'K. Consider an element g of the form
(2) Nr (9)=<gye”*,  p=2.,.1 R vv,=vR%
with v=(v,, - -+, vy). Contrary to the orthogonal case, ¢’ no longer
belongs to S(W). So welet R,,=R,, e t-C[[t]], and regard g (resp. e*?)
as an element of A(W)[[t]] (resp. S(W)I[t]D), the formal power series
ring with coefficients in A(W) (resp. S(W)). The norm map (1) is
uniquely extended there. (This formulation is due to T. Miwa.) Most
of the formulas in the orthogonal case are valid for g of the form (2),
if we replace ‘K by —!K. We tabulate below formulas corresponding
to (1.5.5)-(1.5.6), (1.5.7)—(1.5.8) and (1.4.6)—(1.4.7) of [7].

(3) Nr (wg)=C_7,-1 v,A+RK),c,)-{g>e'’*
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Nr (gw)=(3} .-, v.(1+RK),.c,)-{g)e"”
where w=31_,v,c,.
(4) _90,=C0LvT.-9
(5) R(K®P'KT)=T-1, T'=(T,).
{g>*=gg*-det 1+ KR)
where * is defined in [1]. Let 4=(1,,)=‘4 be such that 2,,=1 (v=1, - - -,
n) and define W(A)=@"_, W* analogously as in [7]. Then

(6) Nr (g®- - ,g(n))___<g(1) .. ,g(n>>eﬁ/z
<g<1> .. ,g(n>>=<g(1>>, . ,<g(n)> det L—A(NDR)"
R=RA—AWDR)", p=0R"
where Nr(g(v))=<g(v)>ev(D)R(v)w(v)/2, D=, ..., ™),
K - - - 2K
RW XIZtK
R—= . ) and A= ) ) ..
R(n) . . Zn_l nK
ZlntK c Zn—l nzK J

Notice the exponent —1/2 of the determinant in (6), which differ from
the orthogonal case by sign.

2. Let ¢(u), $*(u) denote the creation (x<0)-annihilation (u>0)
operators of complex free bose field. Their commutation relations
and expectation values read

[p(w), g(uw)]  [p(w), g* ()] \ _ 1 ,
(0 ([¢*(u), sl 16+, ot A L AR

Spwgw)y  {plwg*w)) \_( 1 ’
(8) <<¢*(u)¢(u’)> <¢o*(u)¢*(u’)>> _<1 >2nu+5(u+u ).

For l e C we set

( 9 ) ¢l(x)=j£zy(0+iu)te~im(x“u+x+u—l)¢(u)’

Zk(x)zjdl/,(o_l_iu)le—im(m—u+x+u—1)¢*(u).

In the case 1=0 we write (9) simply as ¢(x) and ¢*(x), respectively.
Set further

(10) PB(a/; l)=2 J‘J‘ Q@d—?’!’/RB(u, u/; l)e—im(a-(u+u')+a+(u—1+u’—l))¢(u)¢*(u/)’

. —40 \"2 A y—104/ % —10
Rg(u, w ; )= —2 sin l(u zO) ’
s ) r w —10 u+u' —10

and define pz(e; D), pE(a; ) and ¢7(a; ) as follows.
an Nr (¢5(a; D) =exp (pz(a; 1)/2)
Nr (¢f(a; D)=¢.(a) exp (os(a; 1)/2)
Nr (¢7(a ;5 D) =¢7(a) exp (os(a; D/2).
Notice that if =0, I’=0 (11) reduce to 1, ¢(a) and ¢*(a), respectively.
The local expansions corresponding to VII-(6), (7) are valid. Assum-
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ing l ¢ Z we have
(12) Nr (3(@)es(a; D) =370 Nr (0% 1,10 ,(a; D) v_,14,lal
+ Z;;o Nr (¢El—j(a ;D) vik+j[a]
Nr (¢*@)es(a; D) =270 Nr (of; ,(a; D) - v, ,[a]
+ 22570 Nx (95 (a5 D) - 0%, lad,

(13)  Nr(g@gef@; D) ZEEf}l}?Nr (ps(a; D) (v_vlal—vilal)
+Nr (g(@)ps(a; 1) - ¢ (a),

1

Nr (¢*(@)gi(a; D)= WNI' (psla; D) (v_pla]l—vilal)

+Nr (¢*(@)ps(a; D) - ¢u.(a).
Here we have set v,[a]l=v,(—(x—a)~+10, (x—a)* —1i0), etc. In (12)
and (13), if the order of product is reversed as gz(a; Dé(x) and so
forth, we are only to replace the boundary values T(x—a)*+10 by
F(x—a)*F10 (compare the case of fermion VII-(7) where a change
in sign should be incorporated). We note in particular the relations

ok . —_ M . - -t a
(14) ¢(x)¢,f (a; D)= (SDB(a s D-v_lal—m a(—a)

ps@; )

2 s8in nl

v alal+ - -)-q—(terms involving v#, ,[a], 7=0),

R D N |
¢ (x)so-z(a,l)~2 :

D) v* Tal— 1m0 on(a: 1
sin (goB(a,l) v¥la]l—m amw(a’ )

-v¥ o lal+ - ) + (terms involving v,, ,[al, 7=0).

Asg a result of (12), (13) the operators (11) enjoy the following com-
mutation relations with the free field ¢(x), ¢*(x) for spacelike separa-
tion of « and a:

. d(@)p(a; ) xtr>at, 2=<a7)
(15) pla; D)= {ez"“;(x)go(a ;D xr<a*,x">a")
for ¢(a; D=gpp(a; D) or ¢F'(a; ) with I’=1 mod Z,
) ¢*(@)pla; 1) (x*>at,x"<a")
16) ola; l)¢*(x)={e_2,“ 5 @ola; D @ <a*, x5~ >a")
for o(a; D=gpz(a; D) or ¢2(a; ) with I'=—1 mod Z.

3. Making use of the operators in § 2 we now introduce our wave
functions in the Minkowski space-time X¥*, For v=1, --.,n we set
A7) Tpv(@*, x5 L)=n{d*@*)ps(a,; 1) - -op(a,; L)g(@))

5.0, L) =2 sin zl,{pp(a,; 1) - -2, ; 1) - -op(a, 5 L)p(x))>
where g, =1,(L)={pp(a;1) - -ppla,;l,)> denotes the r-function.
These functions (17) are analytically prolongable to the subdomain of
(X9"+2 (and in particular that of (X®*)**?) defined by Im (z*—a,)*
<0,Im (a,—a,)*<0 A= p<v=n) and Im (x—a,)* >0, to result in the
canonical basis v, (L), v,(L) in VIII-§§1, 2, respectively. In the sequel
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the vacuum expectation values (17), rz,, etc. are often confused with
their Euclidean continuations. From (14) we have
18) a, (L)=—m"9,, logrp(L)  (=1,---,m)
in the notation of VIII. In view of the characterization of these
Euclidean wave functions (c¢f. VIII-(5)), we see that the following re-
lations hold between the “fermi” and “bose” wave functions :
19) KX @®pp(ar; 1) - - -op(ay 5 LV, (@) [ t5a(L)
={¢*(@®)pp(tt;; L, +1/2) - - p(@n 3 1, +1/2)¢(2)> T (L+1/2)

(20) Wopay3 1) ol (@, ;1) op(y 3 LW (@) [ Tpa(L)

=<¢B(a1; l1+1/2)‘ . 'Soﬁ,*n/z(a»; lv+1/2)

@@ 3 1+ 1/2)¢(@)) [ta(L+1/2).

On the other hand, from (18) and VIII-(21) the “fermi” and “bose”

r-functions z5,(L)=<{pr(a,; 1) - -¢r(@,; 1)) and z5,(L+1/2) are them-
selves related through

(21) dlog rp,(L+1/2)=—dlog tp,(L)=—

where o denotes the 1-form VIII-(20). For instance if n=2 we have
@2) o= (t((%)z— sinh? \;f) — 4~ tanh? «p)dt /2

where t=2m |a,—a,|, I=1,—1,, and {»=1(t) satisfies

23) “2;’;+%%‘l;__ 5 sinh 2¢+( l) tanh + - sech? y.

Equation (23) is converted into a Painlevé equation of the fifth kind by
the substitution y=tanh?+, z=%%. By the boundary conditions zz,,
trn—1 (@,—a,|—oo for all p+#v) (21) implies further that

(24) Tl +1/2) tp (L)=1.

Introduction of the parameter 4=(1,,) is carried out similarly as
in VII[5]. Let ¢’(w), $**(w) (u=1, - - -, n) denote copies of ¢(w), *(u).
The inner product { , >, and the vacuum expectation value { >, of px-th
and v-th copies are set equal to 1,,=2,, times the original ones, where
we assume A,=1 (v=1,---,m) as before. Define ¢{”(x), ¢7*(x),

oR(a; D), (a3 D) and ¢F*¥(a; 1) by using ¢“(u), $**(w) in place of
#(w), ¢*(u) respectively. We have then
(25) TP (@)@ (@5 1) - - o (@ 3 LIV @)D 4/ ton(Ls A)
= <¢*‘”’(w*)¢“>(al s 1L,+1/2)
@8Ny 3 Ly +1/2)¢P (@)D 4/ Tpn(L+1/25 A)
(26)  ipf(a;; ll) @O (a, 3 1) o (@ s LW (@)) 4] TralLe; )
_<90§3)(a'1 H l1+1/2) 90{:5{1)/2(0'/4 3 L+1/2)
05 (O 5 L +1/ 2)¢‘"’(96)>A/ tan(L+1/2;5 A)
where trp,(L; /1) <so“’(a1, 1)o@ (an; l)y, and (L +1/25 A)
={oP(a,; L, +1/2)- - (g 5 ln+1 / 2)>,, are related through
@27 Taa(L+1/25 DLy AH=1.
4, In the special case I=1/2, it is possible to construct operator
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theory based on neutral bose field ¢(u). The field ¢z(a) is introduced
in I[1] along with ¢r(a) and ¢"(a). We set further

@) Nr (@)= ([duvoFiusie-tme-sseriga)) - Nr (ps(a)).

From the definition, ¢®(a) =%(¢%(a), ¢2(a)) transforms as a spinor. It
is shown that if ¢ and &’ are mutually spacelike, then
(29) [ps(@), p5(a)]1=0
[%(a), o2 (@N], =0 (e, '==%).
Moreover the asymptotic fields for ¢?(a) (¢==)
(30) B (w)= ¢ (w) lim ~ da'(etmzmutatu=bg 0B (x)

t—too 20=¢
_¢?(x),aoeim(x-u+x+u—l))
exist and are calculated exactly. We find

31) 2. (1) = (04 1u)* 25 (u)
where

(32) Nr (W2 w)=gw)-exp (—z f tMﬂ(i(lul-—u’))¢+(u’)¢(u’))

satisfy the canonical anti-commutation relations [y2(w), vE(u)],

=2r |u| 6(u+u) for free fermion (cf. I-(2)[1]). As in the case of

(@), the asymptotic state vectors are related to the auxiliary ones

through

(33)  <vae|y2w)- - YE)=].qs € (£ @ —u)-{vac| g(w)- - - $u,)
V) - - A E () |vac) = [Ty € ((w—up) - ¢'(uy) - - - $'(w) | vac)

where 3(u) =y5(—u).

To sum up, ¢®(@)=4p%(a), p%(a)) is a fermion field satisfying
Lorentz covariance, microcausality and asymptotic completeness, and
its S-matrix is given by S=(—)?-b2 where N denotes the total
particle-number operator.

Just as in the complex case, the relation with the Euclidean defor-
mation theory enables us to express the z-functions for ¢z(a) and ¢?(a)
in a closed form. The analogue of (24) reads
(34) Ton Tra=+det cosh H
where 75,=<05(a) - - 052>, Trn=<pr(@) - -9r(@,)>, and G=e7*" de-
note the corresponding solution of II-(18) [2]. The mixed r-functions
(35) tgaarm, =<es@) - - -9i(a,) - ¢t (a,,) - - 0p(a,)) /75,
where ¢2(a,,) is placed in the v;-th position for i=1, .- -, m, are given
by (ef. IV-(49)[2])

(36) fgﬁ:;;:?ﬂ vem Ha’fnia’n (é;ijﬁ;f/,ck)j, k=1,000,m*
Here
(37) f%‘;t, ++ = %ﬁ‘;t, -— _fpv/zm(a,u - a’v)

f§2;+—-=f%2;~+ = _gpu/z
with p#v and F=(f,), G'=e**=(¢9*). In particular the 2-point
functions are expressible in terms of the solution (#)=+(t;0,1/x)
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in reference [9] of the equation (23) with I=0. Setting a,—a,=te?’/2m
(t>0) we have

(38 75 T =Cc0sh (¥(¢)/2)
(R (@)e%(a)) {pi(a)pZ(a)y\ (—ie y/(t) —isinh ()
(39) ((gof(al)gof(ag)) <¢§(a,)¢§(a2)>)"<i sinh4(t)  iety/(t) Jem2

(6=
where /()= gt
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