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1. Ch. Pommerenke [4] proved the following theorem. Let f(z)
=z+az-X+azn-+... +a_xz+a be a polynomial of degree n with
some a O. Assume that the region E {z e C" If(z)l <= 1} is con-
nected, where C stands for the field of complex numbers. Then

max f’(z) en
zE 2

P. ErdSs [5] reviewing Pommerenke’s paper conjectured that

max [if(z)]< n

is also true and it is best possible. ErdSs reposed his conjecture as a
problem in [2]. As it appears in [3] ErdSs’ conjecture was unsolved
until the year 1972 and to the best o our knowledge it is open until now.
The purpose o this paper is to give a counterexample to ErdSs’ con-
jecture. It seems to us that this gives some information concerning
the amous coefficient conjecture o L. Bieberbach [1], [6], [7].

2. Counterexample to rdSs’ conjecture. Let T(z) be the
Chebyshev polynomial o degree n, defined by T(z)=2 cos nS, where
z=2 cos O, and n=0, 1, 2, 3, .. This is a complex polynomial of a
real variable and has n real zeros in the line segment [--2, 2] and --2
T(z)2 or --2Kz2. The recursion ormula, T+(z)=zT(z)
--T_(z), which is valid since cos (n+ 1)0+cos (n--1)=2 cos n0 cos 8,
allows us to write the ollowing sequence o polynomials" T0(z)=2,
T(z)=z, T(z)=z--2, T(z)=z--3z, T,(z)=z’--4z+2 and in general

T(z)=z+ (_1) n n--m--1 z_
= --1

is a complex inhomogeneous polynomial in a real variable and of
degree n. Consider now f(z) =T(z/). This is a monic inhomogene-
ous polynomial of degree n and in fact 2 f(z) 2 for -2 z

22. Take 2 1/2/. Then --1 f(z) 1 for --2/2x/z2/2TM.
Because of the fact that T(z)=T(2 cos0)=2 cos n, it implies that
T(2 cos 0)=n(sin n0/sin ). Thus, max ([T(z)[" --2/2TMz2/2/}=n
because max ((sin nO/sin )" -2/2x/ z 2/2TM} n. However, f(z)
=T(z/2). Therefore f’(z)=n-xT(z/) and so max{f’(z)[’--2z
22)=2-n. If we set 2=1/2/, then max {]f’(z)] --2/2/nz2/2TM}
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=n/2.2/n./2.
Claim that E=(z e C" If(z)l<_l} is a connected subset of C. As-

sume that this is not the case. Then E,=A U B where A, B are dis-
joint, closed and nonempty subsets of C. It follows that If(z)]= 1 when
z e 3A (the topological boundary of A) by the analyticity of f. Thus if

f has no zeros in A then the minimum modulus principle implies that
If(z)l-1 in A and which implies that f(z)=constant on C, which is a
contradiction. Hence, f has a zero x e A and in act this is a real
zero. The same reasoning shows that f has a real zero, x. in B.
Then the closed line segment [x, x] with end points x, x is contained
in E--A U B, since [f(z)[<_l on the closed real line segment between
any two zeros o f which again is a contradiction, for the closed line
segment [x, x.] is connected and x e A, x. e B where A, B are disjoint
and closed sets in C. Thus E is connected. Hence we have given an
inhomogeneous polynomial f(z) of degree n with Ex connected subset
of C but max If’(z)l>n/2. E]

3. Remark. For a better understanding of the set E we con-
struct the following figures, as the degree n of the polynomial f(z)
varies. Let n=2. Then T.(z)=z2--2, f(z)=z--l. Consider u(z)
--log Iz--ll+log Iz+ll. Then u(z) is a harmonic function on C--{--1, 1}.
It follows that u(z)= 0 on the lemniscate and u(z)= oo as ]zl-- oz. There-
fore u(z)>0 outside the lemiscate. It is clear that u(z)<0 inside the
lemniscate. The picture of E is the shadowed region in Fig. 1, and
{z e C" If(z)l=l}={-2, 0, 2}.

Fig. 1

Similarly, working for n--3 we find for E the shadowed region given
by Fig. 2, and for n-4, we find for E the shadowed region given by
Fig. 3. In a similar manner we obtain the figures for Ex, as n_ 5.

4. Open problem. Find the least upper bound of the

maxe ff(z) ?
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