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Let E be an elliptic curve defined over @, and ¢ a rational prime.
Put E,={a e E|¢a=0} and K,=Q(¥,) i.e. the number field generated
over Q by all the coordinates of the points of order £ on E. Then K,/Q
is a galois extension and Gal (K,/Q CGGL,(Z/4Z). When E has no
complex multiplication, Gal(K,/Q)=GL,(Z/¢Z) except for finitely many
2’s ([6]). And we know that GL, (Z/4Z) is non-solvable for ¢>3.

The aim of this note is to investigate the law of decomposition of
primes in K,/Q. Let p be a rational prime (s¢) where E has good
reduction. Then p is unramified in K,/Q. We deal exclusively in that
case. (Note that the method in [7] enables one to determine the de-
grees of most primes but not all, especially the complete splitting case
cannot be determined.)

Let ==, be the p-th power endomorphism of E mod p. Put N,.
=4#(F mod p)(F,») and a,-»=tr (™), where trace is taken with respect
to 4-adic representation of E modp. Then Nyn=1—a,.+p™. (Note
that we can calculate a,» by the value a,). As Endy, (£ mod p) is iso-
morphic to an order o of an imaginary quadratic field k, hereafter we
identify them (so x € 0, k=Q(r)).

Theorem 1. Let £>2 and f be the degree of p in K,/Q, and m
the smallest rational integer >0 which satisfies ¢*| N and £|(p™—1).
Then the following assertions hold. (1) If £24((a,)’—4p), then f=m.
@2 If 2¢|((ap)*—4p), then f=m or fm, according as £|(o: Z[z]) or
not, where o=Endy, (£ mod p).

Corollary 1. p decomposes completely in K,/Q=8*|N,, ¢|(p—1),
£](o: Z[x]).

Corollary 2. If ¢||N,, ¢|(p—1), then f=¢ and £*| N ..

Proof. We put E’=E mod p, E;={a € E’| a=0}. First we note
that the degree f is nothing but the order of = in (o/40)*. Indeed,
Sf=the degree of p in K,/Q5I[Q,(E): Q,1=SSI[F,(E): F,l=f&n’
=1 mod 4o, 271 mod 4o for all n<f. (For the second &, see [4] p.
672.) And this shows especially that ¢*| N,, and ¢|(p/—1). Putp™=q.
When 4>2, we see #*|N,, ¢|(g— D& (0)'—44q, a,=2 (mod £). So
we can write a,=2+ 4o, (a,)*—4q=20*-n*(—4d), a,8,n,de Z, >0, ¢fn,
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d = squarefree > 0. Therefore 7™ =z, = (0, ++ (@) —4¢)/2=1+4(a
+ 4/ =d)/2. Put w,=(a+£¢"'nv/—d)/2. Then w, € o;, the maxi-
mal order of k, and n,=1+4w,, (Zlw,]: Z[z,])=4¢. Hence we see i)
if 2|(0:Z[x,D, then as 0DZ[w,], f=m, ii) if £f(o: Z[x,], then as
0pZIw,], f=4¢m. (Notethat for two orders R, R’ in k with conductors
¢, ¢ it holds that RDR'&c|¢’). Indeed in case ii) we have z™ %1 mod 4o.
Since z™=1+ ¢* (a polynomial of w,) and 4Z[w,]CZ[z,]Co, we have
a™=1mod 0. So f|ém. As f#m, we have f=/s,s|m. Then
£|(t—1), where t=p*. So if ¢*|N, then s=m; if ¢||N, then ¢*)(a,)
—4t, but as ¢ (a)*—4q, we see {|(Z[x,):Zlr,]) and this leads
2| (o: ZIz,)), a contradiction; if ¢4 N,, then considering the rationality
of the points of E/, we know that ¢ must divide m/s, but this contra-
dicts 7»=1mod 49. Case i) is evident.

Now the assertions (1) and the first part of (2) are obvious, since
the assumptions lead ¢|(0: Z[#,]). So hereafter we assume ¢?|(a,)’—4p,
£4(0: Z[z]). Under the first assumption we easily see that ¢|(Z[z]:
Zlz' &4 r. Inview of above ii), what we must show is £} (0: Z[z™)).
Assume the contrary: ¢|(o: Z[z™]). Then m=4¢r, for some reZ.
Putting p"=wu, this leads ¢*| N, or ¢*|N,. (and ¢|(x—1)) which violate
the minimality of m. Indeed, since ¢%|(a,)’—4p, we see ¢|(a,)’—4u,
80 ay=+2mod 4. If a,=2mod ¢, then N,=0mod 4. Suppose ¢||N,,
then (a,)’—4u=1—u)*—2A+u)N,+{N,)*£0mod 4. So we have
&|N,. If a,=—2mod 4, then N,,=N,A+a,+uw)=0mod ¢. In the
same way as above wee see #2| N,.. This completes the proof of our
theorem.

Proof of Corollaries. Corollary 1 is obvious. Corollary2. Use [7]
Lemma 1 or argue as follows. In general for P(+0) ¢ E,, we have
(K,: Q(P,2)=1 or ¢, where  is a primitive root of unity of degree ¢.
Indeed,

Gal K./ QP 0)G{(§ 1) ¢ GL. Z/42)}.

Our assumption means that p is divided by a prime of absolute degree
1in Q(P, ), for some Pec E,. Therefore f=1or 4. Butif f=1 then
4%|N,, so f=4¢, and we have £*| N 4. Q.E.D.

It is perhaps worthwhile to note that for a prime p to split com-
pletely in K,/Q for some E,, it is necessary that p>(¢—1)* (but not
sufficient). For example, p=11 cannot split completely in K,/ for all
E , (assuming p=11 is a good prime for E).

To calculate f we must know the index (0: Z[z]). If E mod p is
supersingular, then the conductor of Z[z] is 1 or 2, so for our purpose,
we can assume E mod p is not supersingular. Then we have the fol-
lowing

Theorem 2. Assume E mod p is not supersingular. Then ¢|(o0:
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ZIz)J (X, j(E)=0 (mod p) splits into a product of linear polynomial
in F,[X], where J (X, j) is the modular polynomial of order ¢ and j(E)
18 the j-tnvariant of E.

Proof. First note that J,(X, j(E))=0 (mod p) splits ete.&all ellip-
tic curves A; whih are /-isogenous to E’ can be defined over F, (i.e.
J(A,) € F,). It is known that there is an elliptic curve E, defined over
k(7(0)) (=the ring class field of % corresponding to o) such that E, has
good reduction at p (=a prime of k(j(0)) lying above p) and that £, mod p
=FE’ (over F,), End (E)=End (E')=0. As ¢+p, 4-isogenies from E,
and E’ correspond each other under reduction. Since the conductor
m of o is prime to p, one can assume End (4,) is of conductor 4m, or
m, or m/¢ ([1] p. 20). &) Since A; can be defined over F,, all o,
=End (4,)DZ[z]. As at least one of o,’s is of conductor 4m, ¢ must
divides (0: Z[z]). ©) The condition 4|(o: Z[z]) implies all o,DZ[x].
Therefore by the first main theorem of complex multiplication theory
[1] p. 23, p splits completely in £(j(0;))/Q. As there is an elliptic curve
defined over k(j(o,)) which reduces to 4, modulo a prime of k(j(0,)) ly-
ing above p, A; can be defined over F,. Hence all j(4,) e F,. This
ends the proof of our theorem.

Owing to [2], we know the explicit formula of J,(X, 7) for £=2,3,
5,7. Combining the knowledge of class equations (Fricke, Algebra
Bd. 3), we can systematically exploit in some degree the complete split-
ting case using Theorem 2 (or rather by the relationships between the
structure of End (F mod p) and F,-isogenies).

Examples. ¢=3. When p=7, a,=—1 gives N,=3 and =,
=(—14+8+/—=8)/2. Since j(—1++—38/2)=0, p=T splits completely in
K,/Q, if j(E)=0 (mod 7) and a,= —1. (Bythe way, as j(—1 +3/—-3/2)
=1, on E, with j(F)=1 (mod 7) and N,=3?, p=7 has degree 8 in K;/Q).
When p=67, a,=5 gives N,=87, r,=(5+8%/—3)/2. So assuming
a,=5, when j=0 (maximal order) or j=1 (conductor 3), p=67 splits
completely in K,/@Q, while when j=41, 46, 63 (conductor 3*; these to-
gether with /=0 constitute the solutions of J4,(X,1)=0 mod 67), p=67
has degree 3 in K,/ Q.

Remark. When £=2,3, we know the structure of K,, K, well, so
we can state explicitly how p splits in them. For F:Y*=X*+AX+B,
put 4=—244A*+27B%). Assume Gal (K,/Q)=GL,(Z/¢Z) for £=2,3.
Then K,=QW4,P,), K;=Q(,P,, ¥4) where P(#0)eE, {=(-1
+4/—38)/2 ([5]). Hence we see p splits completely in K,/QS2|N,, p
splits in Q+v/4) ; p splits completely in K,/QS3|(p—1), 3| N, p is divid-
ed by a prime of absolute degree 1in Q(¥4). (Note that if k/Q is finite
galois, ¥'/Q finite, both having an embedding into @,, and p is un-
ramified in kk’, then k%’ has an embedding into @,.)
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