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Introduction. In this note we consider the mixed problem
Ou=D;—D;—> "1 D} yu=f(,2,y)  in (0, 00) X R",
BuE (D.z: + bo(ty y)Dt + Z?;i bj(t’ ?/)Dy,-i- C(ty y))u|x=0
(0.1) =9, y)  on (0, c0) X R,
Du)o=u(, y) on k7,
Ulpo=u(®,y)  on R%,
where D,= —1d/dt, D,= —1d/0x, - - -, c(t, y) € B~(R: X R*1)" and b,(t, )
(4=0,1, - .., n—1) are real-valued functions belonging to B=(R. X R*™").
Let us say that (0.1) is C~ well-posed when there exists a unique solu-
tion u(t,z,y) in C*(RLXR:) for any (u,u,[f,9) e C(R") X C~(R")
X C=(RL X R") X C~(R. X R*™") satisfying the compatibility condition of
infinite order.
When b, ---, b,_, and ¢ are all constant, by Sakamoto [4] we know
a necessary and sufficient condition for C~ well-posedness. If 5,<1
(0.1) is C~ well-posed, and in the case n=3 it is so only if b,<1.
Agemi and Shirota in [1] studied (0.1) precisely when n=2, ¢=0 (b, is
constant). Tsuji in [6] treated the case that b,, - - -, b,_, and ¢ are vari-
able, and showed the existence of the solution in the Sobolev space.
Furthermore, he stated that the Lopatinski condition must be satified
at any point if (0.1) is C~ well-posed. Ikawa [2] investigated (0.1) in
a general domain in the case n=2, b,=0.
In our note we shall study C* well-posedness and the propagation
speed of (0.1). Consider the following equation in A:
“/m:bo(t, y)+|b/(ta y)l A (b,:(bly ] bn-l))-
Then, if b,(t, ¥) <1 this equation has a positive root or no real root. In
the former case we denote the positive root by A,(¢, ¥), and in the latter
case set 4,(t, y)=1.

Theorem 1. If sup bo(t, <1, then (0.1) is C~ well-posed
(t,9) ERY xRn—1
and has a finite propagation speed less than  sup A, ).
(¢,¥) ERY X Rn—1

For a constant v >0 we set C,(t,, %o, ¥o) ={(t, , ¥) : (t—t)v + ((x—2,)°

1) B=(M) denotes the set {h(2) e C*°(M); |h|n= | é |Dgh(z)| < oo for m=0,1,---}.
a m
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+|y—9,»*<0}. Fix the point (¢, 2y, ¥), and let us have constants v,
6(>0) such that w(t, z, ¥) =0 on C,(t,, %, Yo) N{0<t,—t <4, x>0} for any
ue C°(RL X R") satisfying [Ju=0 on C,N{0<t,—t<5,2>0}, u|;s_s
=Dul;_s-s=0 on C,N{t=¢t,—d, x>0} and Bu=0 on C,N{0<t,—t<4,x
=0}. Then we call the infimum of the v the propagation speed at
(o5 Zos Yo)-

Theorem 2. Let sup by(t,y)<1. The propagation speed

(6,9) €RY xRn—1
of (0.1) at any (t,, 0, y,) is not smaller than Aty ¥, ™.

The author wishes to express his sincere gratitude to Prof. M.
Ikawa for his many useful suggestions.

§ 1. Reduction to the equation on the boundary. Let us prove
Theorem 1. We assume that b(2)=(b,(), - -+, b,_.(2)) and ¢(2) (z=(t, ¥))
are constant when |z] is large. The general case is reduced to this case.
Let b(2)=0b and c(z)=¢ for |z]|=7, (2, is a large constant). Solving the
Cauchy problem, we can assume in the problem (0.1) that u,=u,=0,f
=0. Then the compatibility condition of infinite order implies that
every Dig(+0,v) (=0,1, - . .) equals zero. Denote by C<(R") the set
of C~ functions in R* whose support lies in {f,<t} for some {, e R. We
know that the Dirichlet problem

{[]w(z, x)=0 in R*X R,
Wpoo=M(2) on R*
has a unique solution w(z, ) in C*(R* X R%) for any h(z) € C=(R") and has
a finite propagation speed, which equals one. We set (for h € C3(R™)
Th=Bw.?

Theorem 1.1. There exists a unique solution h of the equation
Th=g in C2(R") for any g€ C2(R™), and it has a finite propagation
speed less than sup A,(z)~".

ZER™
This theorem yields Theorem 1 in Introduction.

§2. Proof of Theorem 1.1. Wedenoteby H,, ,(R*)(y € R",m € R)
the functional space {u(z) :e-"u(z) € H,(R™}. Let us define the Laplace-
Fourier transformation F,(y € R*) by

Fl=i©=[ e~ u@de  C=o—ip), ueCi®,
and denote by F', the inverse transformation
(i.e. FLf1(2)= @) e j gl f(a—z'r)da).
The norm <{k>,,, of H, (R") is defined by
W= [lo—irpm (Ko—ipPdos  (0).
Proposition 2.1. We have o*—> 51795 —&x0 for (r,7,§) € R**!

2) Let the coefficients of B be extended smoothly to ¢t<<0.
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—il ('={(, &) =(r,1,8) e R**"; e > (I +&)).

Corollary. If (c,7) € R*—il' (I'={¢=(c,7) € R"; >|y|), the equa-
tion *—> "1} —&=0 in & has a root &,(z, n) with a positive imaginary
part and a one with negative imaginary part (cf. § 3 of Sakamoto [4]).

Let us set (for y ¢ I" and & € C3(R™)

Rh=F]¢,(e—ip)+b-(0—ip +h(a—ip],
R* h F_IE, (0—%r)+b (64 +D,-b+e)h(a+ip)l.
Then we have Th= R h(re I") for h e C2(R") and have
B 9=, RED) ey 19 e Gy R (rel).

Lemma 2.1. Let me R and S be any compact set of ¥={{=(z,7)

ER"; r>(?}1£ () DIpl}. There is a constant y(m,S) such that if |y|

=7,m,S) and y e Ks={y=pL:{ €8S, p>0} the following estimates hold:

1) 17Ky m, <CB Y,y B C (R,

() 7Ky, , SCCR* W), b€ C3(RY).

This lemma is proved by means of the following lemma.

Lemma 2.2, Let S be a compact set in 3. Then there is a con-
stant 6 (>0) such that

Imé,@Q+bk)-Im¢=6|Im¢|, e R"—iKgs, 2 € R".

Proof. In view of the corollary of Proposition 2.1, we see that
(=Im¢, —Im&,(O) & if e R*—il". On the other hand, if ye K,
£<0 and (y,&) & ' there is a small constant 6(>0) such that £§<—(
+0w) -y for any w(w € R*,|w|=1). Therefore we have

Imé,(Q+b—6Im¢/|Im¢)Im{=0, {c R*"—1iKg, 2 € R".

Proof of Theorem 1.1. It suffices to show that for any g € H,,(R™)
satisfying supp [g]1C 3’ +2,(2, € R™) there exists a solution h( € H,, 7(R™),
7e3) of Rzh=g whose support lies in 3'+z,. Here 3" is the set
{Y eR*; ¢ -y>0foranyy ¢ 3}. Lemma 2.1 yields a solution k7 € H,, 7(R")
satisfying R'hz=g (7 € Y and |7| is sufficiently large). Set

B f=FlE.©Q+b-c+0f©Q1  C=o—ip.
Then we can write
B:h;=0—0@) -D,h; +(@E—c@)h; +g.
The support of the right term lies in 3’4+ %%e R"). Noting that b and
@ are constant, we see supp [27]C 3’ +2 by Paley-Wiener’s theorem (cf.
Sakamoto [4]). Therefore k7 € (N Hy, (R"). Hence we have [y[Kh7pm,,
re¥

< C{g>m,, for any large |r|(y € 3), which implies supp [h;]cz'"-l-zl.

§3. Sketch of proof of Theorem 2. Theorem 2 is proved in the
same way as in the proof of Theorem 4.1 of [5]. The idea of the proof
is suggested by Kajitani [38] and Appendix of Ikawa [2]. Assume that
there are positive constants § and v (<2,(ty, ¥,)~Y) such that u(¢, z, y) =0
on C,N{0<t,—t<d, x>0} for any u € C=(R’. X R") satisfying (Qu=0 on
C,N{0<t,—t<8,2>0}, |sss=Dsth|;or,-o=0 on C,N{t=%,—3d, x>0}
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and Bu=0 on C,N{0<¢t,—t<4,z=0}. In order toshow that this is a
contradiction, we have only to construct an asymptotic solution
Uy, 2, y) =2 1, et®? 20y, (¢, x, y)(ik) "(k>0) such that Ouy=e€*’Ovy
X (ik)~" near C,N{0=<t,—t =<8, #=0}, Uyliety-s=Dthylsms,-s=0 on C, N{t
=t,—08,2>0}, Buy=0 on C,N{0<¢,—t<5,2=0} and v, 0,¥y)=x0.
Therefore we have the eiconal equation with B =0 and the transport
equation with Bv,=0. From the latter we get the equation for v,|,_,.
Let (1,a)(e R},,,) be the direction of the characteristic curve of this
equation at (¢,,%,). Then, choosing the phase function @ appropriate-

ly, we have |a|=A(t, ¥)"'. Thus the required asymptotic solution is
obtained.
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