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4. On the Flat Conformal Differential Geometry, IV.

By Kentaro Yano.
Mathematical Institute, Tokyo Imperial University.
(Comm. by S, KAKEYA, M.1.A., Feb. 12, 1946,)

§4. Theory of subspaces.

We have, in Chapters 1 and 2, established the fundamental differential
equations of the flat conformal geometry, and, in Chapter 3, discussed
the curves in the flat conformal space and established the Frenet formulae
for curves with respect to a projective parameter and with respect to a
conformal parameter. In the present Chapter, we shall deal with subspaces
in the flat conformal space.

1°. Subspaces in the flat conformal space

Let us consider an m-dimensional subspace Cy:

(4.1) B = GA(E, 63, ..., &™)
in the n-dimensional flat conformal space C, described by a curvilinear
coordinates system (§4). Then, the current point-hypersphere A4j = Ao on
the subspace may be considered as function of m parameters i (7, 7, &, ......
= i, 2, ...... , m). Differentiating the relation Ap Ay = 0, we know that, the
hyperspheres

a2 OAL _ 98 04,
tT 98 T 95 o9&

or

42) ai-Ba, (B= %g%
pass through the point Aj. Moreover, since d Ay = d§i A; along the sub-
space, and consequently each hypersphere A; belongs to a pencil of hyper-
spheres determined by the point Aj and a nearby point Aj + d Ay on the
subspace, we see that A; are m hyperspheres orthogonal to the subspace.
From (4.2), we have

4.3) A4; Aw = gir = B B g
Now, we shall choose # — m mutually orthogonal unit hyperspheres Ap
(P, Q R, ... = +1, .., #n)all passing through the point Aj and tangent

to the subspace Cp.

Then the hyperspheres Ap, all passing through the point Ap may be
expressed, with respect to the repere [ Ao, 4;, A=), in the form

1) K.Yano: On the flat conformal differential geometry, I, II, III. Proc. 21 (1945),
419-429 ; 454-465; 22 (1946), 9-19.
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(44 Ap= B Ay + B# A,
where the coefficients satisfy the relations
(45) &uBi"BF =0, guwBP Bg = ira.

Finally, we shall denote by Ax the point of intersection other than Aj
of n hyperspheres A; and Ap such that

AjAs =—1.
Then the point-hypersphere Ax will have the expression
(46) As =1 BB Av+ BS BB A; + Ax,

as it may be easily verified.

The equations A¢ =Ag, (4.2), (4.4) and (4.6) may be solved with respect
to Ao, A; and A as follows:

Ao = A,
4.7) Ay = — BP Bp Ay + B}. Ai + Bp Ap,
A~= 5 BS B A; — BR Ap+ A,

where
Bp = g BF and B = gV g;u Bi".
2°. Fundamental differential equations for subspaces.
Let us differentiate # + 2 hyperspheres Aj, Aj, Ap and A« with respect
to the parameters %, obtaining
0A§ dA; dAp 0A.
ok’ Qfk 9tk gk
The hyperspheres Ap, Aj, Ap and As being linearly independent, they
may be considered as forming a repere mobile for the subspace. Con-
sequently, the above hyperspheres must be expressed as linear combinations
of the hyperspheres Aj, 4j, Ap and A% themselves.
First we have

(45, %%2— = A

For the hyperspheres %—‘?{-, we have the relations of the form
4.9 %—?;L =Il9p Ap +II;:1. Ai+ HUjrg Ag + I As.
On the other hand, differentiating (4.2) with respect to ¢ we find
—ﬁaaA = B,f], A + B}“B;eu—é'“aAu
= Bj'w Ay + Bi" By (I Ao + 1) Az + g Aw)

by virtue of the fundamental equations for Cn, where the comma denotes
ordinary differentiation.

Substituting (4.7) in the above equations, we obtain
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0A; - . . e
St = [B" Bi" Iy, — BF Br (Bik+ Bi* BY ()
+ & g BB BA1 Ai + [Biy (B + B BY (A As
+[Boa (Bi'x + B} Bi¥ (i) — gie B3] Aq + gin A
Comparing the coeffcients of the corresponding terms in (4.9) and in
the above quations, we find
% = Bj* B 1% — BY Bey(Bi'k + B* BY ()
. + é ik B}g Bi’o,
410)  Lmh = BY(Bi% + B B (i),
o = Bor (Bl + BY BY (M) — i B,
115 = gj.
We see that the I} coincide with the Christoffel symbols {4} formed
with the components of the fundamental tensor g of the subspace Cp.
For the hyperspheres %‘:TP’ we have the relations of the form

@.11) %‘}‘_‘;‘3 = %46 + I'kp A, + ITpge Ao

because of the relations A¢ Ap = 0 and consequently Aj %—g;ﬂ = 0.

On the other hand, differentiating (4.4) with respect to &%, we find

9AP _ BR 4 Ao +BF Av + Bhx Ax + BE B (1% Ao + () AD

by virtue of the fundamental differential equations for C, and (4.5).
Substituting (4.7) in the above equations, we obtain
OLP _[B# Bi’ll% + B i~ B Bat(Bi.x + BE Bi’ ()] As
+[Ba(BA x + B By (i) + BF 0k As
+[Ba1(BA « + BE BY ()] Ae.
Comparing the coefficients of the corresponding terms in (4.11) and the
above equations, we find
% = B B 1% + BE « — BSBax (B# » + BE B’ (A)),
(412) II'sp = Ba(Bhs + BE Bi¥ (b)) + BP O,
T por = (BE & + BE Bi” {w)) Bax:
Finally, for the hyperspheres %’%, we have the relations of the form

(4.13) %?f =T Ai + Mogr A

because of the relations Ap As = —1 and As Ae =0.
From the relations Aj As = 0, (4.9) and (4.13), we have
(4.14) Ma = g M
and, from ApAs =0, (4.11), (413) and (4.15),
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(4.15) epr = llps.

Thus, we have established the fundamental differential equations for the
subspace :

( 0 Ao
a k = Ak’
04, "I[@A' ]I’: A; + o A ]7°:°A'
416) &, = i o+ Ip A; + ITjrg A + Il A,
. 5 , )
LGP = IS As + I'4p Ai + Ipas Ac,
JA&w
L 541: = or Ai + Hogr Ao,
where
1}, = B B ), — BY Hyp + 5 g BS BY, Ik = (),
g = Hirq — gie B3, 5% = g,
(4.17) 0 ‘B eV 30 ) -0
Ilp, = Bp By, Iy, + Bp, + — Bg Lpor,
I'yp= —H'yp + 8k B, Ipgr = Lpok, M = gii T3y, Mage = 1 on,
and

Hjpp = Hi! Bm,
418) \Hi' =B+ B B¥ (1) — B (4,
Lpw = BP; 5 Bai = (Bh & + BE B’ (b)) Bar.

Up to the present, the quantities BP were left undetermined, we shall
determine these quantities by invariant condition

045 9Ap _
g]k Ta 2 __35"_ = 0,

which gives
4.19) g% I jpp =0,
From the expressions for 7jp, we find
(4.20) e
Thus, the fundamental differential equations (4.16) take the form
YT
54 lg = Ak:
04; 6 a. . i
@21 —ogk = ix Ao + (it} Ai + Mjrg Ag + gir As,
ég%,% = IIP As — M'xp Ai + Lpgr Aq,
0A& ]
e = ITap A; + Moy Ag,

where
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f, = BBl — Hpe Hp + 5 gin He Hp,
4.22) Mpa = Hppo — g He,

’ Iy = B; By’ IIW + Hp s — Lpo:.Ho,

Lrow = BB, Mok =gt Iy, Hagn= M,
and
423)  Muo= Mi' Bat = (Hii' — = g g Hil) Ba.

We shall call g, Mpp and Lpgs, the first, the second and the third
fundamental tensors for the subspace respectively, the last two being con-
sidered with respect to the tangent hyperspheres .Ap here chosen.

It may be observed that the second formulae of (4.21) correspond to the
equations of Gauss and the third of (4.21) to the equations of Weingarten in
the ordinary differential geometry.

3°.  Remarks on the formation of Ax and A«.

In Chapter 1, we have established the fundamental differential equa-
tions

dA

a 3 b Ally

A 0 2

(4.24) —-gg‘;L = Ty Ay + {p,v)Al'i‘gy,uA:o,
0A» _ A, A
for the flat conformal differential geometry, where
0 _ _ _Rw &w R _ 0
]I,w n__z +2(n_1)(n_2>, Hoov g‘"‘”p,u.

The Ao being the current point of the space, the » hyperspheres A4;
passing through the point A, are defined by the first of above equations,
and the A is defined as the point of intersection other than A, of the
»n hyperspheres A;.

But, from the second of the fundamental differential equations, we see
that, the Ay and A; being known, the point-hypersphere A~ may also be
given by the formula

(425) - L am (S — b 4 — (4 42),
This process of formmg Ax corresponds to the process of conformal
derivative found by T. Y. Thomas.®
Starting from the current point Ao, we define A; = %—g"—, which are »
hyperspheres passing through the point Ay, and put A, A, = g, then the

(1) T Y. Thomas: Conformal tensors. (First note). Proc. Nat. Acad. Sci. USA.,
18 (1932), 103-112; Conformal tensors. (Second note), ibid. 189~193.
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quantities ng and (,fu) are calculated in terms of gu, and the hypersphere
A defined by

o =L gn (S0 —mb A~ () &)

is in fact a point-hypersphere and coincide with the A». This fact may be
proved as follows: The point Ao and » hyperspheres A; passing through
Ao being thus defined, we denote by A« the point of intersection other than
Ay of n hyperspheres A;, then we shall have the fundamental differential
equations (4.24) with respect to the repere [Ay, A;, A»), and consequently
(4.25). Then we see that A. and A. represent the same point-hypersphere.
The same thing may be said for the point-hypersphere As.

In the preceding Paragraph of the present Chapter, we have established
the fundamental differential equations (4.21) for an m-dimensional subspace
in the z-dimensional flat conformal space.

The A being the current point on the subspace, the m hyperspheres
A; passing through the point Ap and orthogonal to the subspace are defined
by the first of the formulae (4.21), » — m unit hyperspheres Ap passing
through the point Ay and orthogonal mutually and to A; are taken in such
a way that we have g% A;%‘%’— =0 and finally A« is defined as the point
of intersection other than Ay of » hyperspheres A; and Ap.

But, from the second of the fundamental differential equations (4.21) we
see that, the Ay and A; being known, the point-hypersphere A« may also
be defined by the formula

426) Aa =L g (38— nb as— o 4))

This is a generalization of the process of the conformal derivative of T.
Y. Thomas. This method of forming A. was used by S. Sasaki® in his
theory of conformal subspace.

Starting from the current point Ay on the subspace, we define A; =
%%,.i =B Aa, which are m hyperspheres passing through A; and orthogonal
to the subspace, and put A;jAr= g and next we choose 7n—m unit
hyperspheres Ap = BY A, + B# Ax passing through Aj _and orthogonal
mutually angi to A; in such a way that we have gf'f'A.-%e— = 0, then the
quantities 7%, {4}, Mjp will be calculated by the formulae (4.22), and the
hypersphere Ag defined by

(1) S. Sasaki: Geometry of the conformal connexion. -Science Report of the T6é-
hoku Imp. Univ. Series I, Vol. XXIX, No. 2, (1940), 219-267.
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A= Lon(SG- Tl as — 1 4))
is in fact a pomnt-hypersSphere and coincides with the Ac.
This fact may be proved as follows: The point Aj and hyperspheres
A;, Ap being thus defined, we denote by A« the point of intersection other
than Ap of » hyperspheres A; and Ap, then we shall have the fundamental
differential equations

( aaf;,o; . Akn

0A; _ 70 4. (i MjrgA .
28 = ik A6 + (i} Ai + MjsgAq + gix As,
BLE — T As — Msr A + Lo Ao,

! 3;;;‘0 _ Tor Ai + Togre Ag

“.27)

with respect to the repere [As Ai, Ap, Aw)], where
{Tz?-k = B}" B M} — Hpp o+ 5 g3 Hr Hr,
Mire = Hino — gir Ha.
But we have

Ap = af A + apg Ag
where

apPQ aRQ = OPR.
Consequently, we have

BE = af +apQBg, Bf = apQBg,
from which

Hyparq = Hirg, Hparg = Hq, Mijpare = Mjrg.
Thus we see that

ﬁikpﬁp = HyppHp and HpHp= HpHp,
and the quantities 7% and IT% coincide.
Consequently, we have, from the second of the fundamental differential
equations (4.27),
— L (0A; 5 . .
As = Lgn(Ghi— M 4i — U 4)
by virtue of the relations g* Mg =0, and we can conclude that A+« and
A coincide.
4°. Integrability conditions of the fundamental differential equations for
subspaces.

In this section, we shall investigate the integrability conditions of the
fundamental differential equations (4.21) for the subspaces.
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We shall first observe that the coefficients of the second of the equations
(4.21) must be symmetric with respect to j and &, thus

(4.28) e = 1%, (%) = (&), Mo = Mo, gt = g
which are naturally satisfied by vxrtue of their definitions (4.22).

Calculating the 234 — 54134 =0 and substituting the relations (421)
themselves m the resultmg relatlons, we ﬁnd )
(4.29) T[m, p =Tk + {5} Ton — (%) Ilak + M;kpflph MhPH‘})’k =0,
(430)  (ihn — Uidor + ) {an) — () {ak} + I 0 — T3y &%
+ git L on — Zin Mk — Miep M'hp + Minp Migp = 0,
(431) M. & — Mino, & + {5} Mano — {3} Mar
+ Mjrp Lrgn — Mjnp Lrgr + git I 5on — gin H sr =0,
(4.32) Gk, 1 — ik + (o} Gan — {n)} Gar = 0
by virtue of the linear independence of Aj, Ai;, Ap and As.
Denoting by a semi-colon the covariant derivative with respect to the
Christiffel symbols { ,k} we have, from these equations,
(4.33) & g%k + Mikp 1% — Myp ITpe = 0,
(434)  Clan— Mjp M'np + Mjnp Mip = 0,
(4.35) Ming:n — Ming; & + Mijrp Lror — Mjnp Lpor + gik I ooon— gin Il e = 0,
the equations (4. 32) being reduced to identities, where we have put
(4.36) C‘O,kh = ﬂ:k ih— I[,;, &
(4.37) Clitn = Rijn + I3k 01 — Il]h 0% + gin Moon — ik Ht:ok,
and R’ are components of the Riemann-Christoffel curvature tensor formed
with g.
Calculating next aa_i‘%fh - %,;‘%gy =0 and substituting the relations
(4.21) in the resulting r:alat,ions, we find
(4.38) )/ —In e+ MkPIIah - MahPHak + LPQkHQh—LPQhHQk =0,
(439)  M'ps— M'ps + Misg Lops — Ming Lops + 0k T35 — 84 Il = 0,
(440)  Lpor:n — Legh; & + Mp Mapg — Mp Maro
+ Lpre Lron — Lern Lros = 0
because of the linear independence of Aj, A, Ap and A«. The equations
(4.39) coincide with (4.35).
Calculating finally %,;%:f,; - 7{95%% = ( and substituting (4.21) in the
resulting relgtions, we find
(441) Héop:p —Méon; 5 — Mopp Map + M epn Mixp = 0,
(442) Hoqr; s — Haqn;k — Mok Mang + on Marg
— Il &opr Lpon + I soppt Lrgr = 0
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because of the linear independence of Aj, A; Ap and As. The equations
(4.41) coincide with (4.33) and (4.42) with (4.38).

Thus, as integrability conditions of the fundamental differential equations
(4.21), we have obtained
( Cou + Mixp ITon — Mipllp = 0,

C.jsh — Mip Misp + Mip Mixp = 0,
Mip:n — M@ + Mixp Lroh — Minp Lrgk + gik 1T coh — ginll &gk = 0,
(4.43) Oox;n—in; k+MakPHah""MhP”ak
+ LpquITon — LPQhHQk =0,
LLPok.-h — Lpak: & + M'kp Mang — M'hp Marg
+ Lprr Lron — Lern Lpgr = 0.

The second, third and fifth of these equations correspond respectively
to the equations of Gauss, Codazzi and Ricci in the ordinary differential
geometry.

5°.  The fundamenial theorem of subspace theory.

In the preceding Paragraph, we have seen that, the first, second and
third fundamental tensors gjz, Mjrr and Lpgr of an m-dimensional subspace

C» appearing in the fundamental differential equations
A

-aéf’ = Ak’
0A; 0 ,.
(4.44) gz = Uik Aj + (i} Ai + Mjrg AP + git A,

—ag%i = HpkAo—-MkpA,+LkaAQ,

-a—a%,:—"-= Ha.kAi+ﬂaookAq

must satisfy the equations (4.43).
Putting ¢ = 2 = @ in the second of the equations (4.43) and summing up
for a from 1 to s, we find . )
(4.45) Ris + (m — 2) Ijs + gis g% Hse + Miap Misp = 0
by virtue of (4.37) and M%p = 0, where Kj = R’jza.
Contracting g to (4.45), we obta@n
R +2(m—1)gb g + M5pMbhp =0,

from which
R M. bPM aP
2m—1)  ~ 2(m—1)

where R = g/ Rj;. Substituting this ueqation into (4.45), we find

ghe Iy = —

o _ R g iR _ Mi.p M
“46)  Iin= = iy +t 5D m =3~ om—2
&t g (Msp Mbp)

2(m Dm —2)
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and we see that H?k are calculated exclusively in terms of the components
of the first and second fundamental tensors gjx and Myp: Contracting next
g% to the third equations of (4.43), we obtain
—~ Mg — M%p Lpga + (m — 1) Mgy = 0,
from which
47)  Heow=1 = —L | (Mo:0+ Mir Lrcs)

and we see that ITeqn = H%h are expressed in terms of the components of
the first, second and third fundamental tensors.
Substituting (4.46) and (4.47) in (4.43), we obtain

Rie:n girR:n (MaPMkP) b g(Mp M5P) s
([~ s Py e 2(m — (m —2) ]
_[Rin:r_  gnR:: (MiaPM‘hP);k__ gz‘th?bPM?aPz.k ]
m—2 2(m-—1)(m—-2) m—2 2(m—1)(m—2)
— 1 MkP(Ma WP+ M hQLQPa)+ MhP(MP ;a
+ Mf'ko Lora) = 0,
R.jrn— ;;‘7:2 (Rj 0h — Rjn 0% + gix R'n — gin R'3)
R

m(gﬂ Ok — &in 0k) = Mxp Minp ~ Myp Misp

+ [M,@M"kp&h-—-M;athPBk + gk Miap M5p

(448) | —é&n M-'aPM-akp] - -(-mMa’f; 1(‘::“? 2 (gt Oh — Zin 0b),

Mirg:n — MinQ:r + Mjrp Lron — Mjnp Lpge
+ 1 lg,'k(Mf‘;.o,-a + Mg LRqa)

- ‘““‘”gﬂx(mo a+M“kaRoa) 0,

" 1 (MakP ia + M%Q Lora); n — (Mw ra + Mo Lora):k
+, 1 (M%q;a + Mg LRQa) LOPh - 1 (M'hq:e
+ M #R LRrQa) Lopr — ——— (Rtk Mhp— R:h M

+ Miag M Mirg — Maa Mf’ho Mi) =0,
Lpgk;h — Lpgn;:k + M%p Mang — M5p Marg
\ Lprr Lrgn — Lprrs Lrgr = 0.

These are the necessary and sufficient conditions that the fundamental
differential equations of the subspace are completely integrable, 17 % and
T = Hoops being given by (4.46) and (4.47) respectively.

Now, suppose that the three tensors gi, Mjpp and Lpg: satisfy the
equations (4.48), then the differential equations of the form (4.44) are com-
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pletely integrable, the I/ 27, ad I = Meps being respectively given by (4.46)
and (4.47).

Thus if we give a system of initial values (Agd, (Ao, (Ar), (A&) Of
Ap, Ai, Ap, A% at a fixed point of the space, then the Aj, Ai Ap, As
satisfying (4.44) are completely determined. But if we put

Too = A Ay, To5= ApsAj, Top = Ao Ap, Tioe = AjAs + 1,
Tij=A;Aj—gij, Tip= AiAp, Tix = A;iAs,
Tpg= ArAQ—0rq, Tre=ApAs, TeoTe = As As,
we have

00 e
e =2 i

e = T+ % Tio + () Ts + Mise Tip + g To,
3 Tir _ Tep + Ik Tos — Mip Tsi + Lrgr Tiq,
Cgi® = Tha + Ton Toi +Mogr Tia,
—gggz =% 6T + (%) Taj + Mup Tip + git Tico

+ I3, Toi + () Tai + Map Tip + gix Tiss,
e =11 S, Tip + (&} Tar + Mag Top + git- Trs
+ % T — M Tai + Lear Tia,

351;' = 1% Tis + {5} Taso + Mup Tpe + git Tooo
+ 17 zok Tai + Hsgr Tiq,
_8559 = I}k Tiq — Mxp Tig + Lere Tre

+ O Tip— M'sq Tip + Lors Trp,

~~313%“1 = 1% Tos — Minp Tiee + Lpor Toe
4 I Tip + Mg Top,
3,_5563’213 =27 ;k Tiew + Hegr Tqs),
which show that the first partial derivatives of 7’s are linear homogeneous
functions of T’s. Consequently the second, the third, ...... partial derivatives of

T’s are also linear homogeneous functions of 7”s. Thus, if we choose a
system of solutions of (4.44) whose initial values satisfy 7" = 0, the conditions
T = 0 will be always satisfied by the solutions, that is to say, if we fix an
initial repére [(Ao), (A, (Apk, (AxX] at a point of the space, the solutions
of the differential eguations (4.44), whose coefficients satisfy the conditions
(4.48), always exist and constitute a moving repere [Aj, Ai, Ap, Ax] of an



No. 2.] On the Flat Conformal Differential Geometry, IV. 31

m-dimensional subspace described by A¢, which coincides with [(Ad), (A:,
(Apk, (A=)] at the given point. Two such initial reperes given at different
points being always superposed each on the other by a certain conformal
transformation, we have proved the

Fundamental theorem of subspace theoryV: If we are given three tensors
gt (= &)y Mirp(= Mijp, &* Mup = 0) and Lpge (= — Lops) satisfying the con-
ditions (4.48), there exists always a subspace whose first, second and third
fundamental tensors are respectively gj, Mjp and Lpor, two such subspaces
heing alwavs capable to be superposed by a certain conformal transformation.

1) K Yano and Y. Muto: Sur le théoréme fondamental dans la géométrie conforme
des sous-espaces riemanniens. Proc. Physico-Math. Soc. Japan, 24 (1942), 437-449.



