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65. On a Theorem of Banach Space.

By Tosio Aok
Mathematical Institute, Tohoku Imperial Univ., Sendai.
(Comm. by S. KAKEYA, M.1.A., Dec. 12, 1946.)

Let E and E’ be metric compact spaces, and R and R’ be the sets of all
real continuous functions on E and E’ respectively. If we define addition
and multiplication by real numbers by the ordinary method, and the norm
by the maximum value of function, then R and R’ become Banach spaces.

We owe the following theorem to Banach.®

Theorem. In order that E and E’ be homeomorph, it is necessary and
sufficent that R and R’ are isometric.

The object of this paper is to give an elementary proof of the theorem.

Since necesity is evident, it remains to prove the sufficiency. Let V(x)
= & be the isometric transformation from R to R’. If we put Ut = V(1)
— V (6), then U (x) defines an equivalent transformation@ from R to R’

We requires several lemmas.

1°. U(e) = ¢, where e and € are units in R and R’, that is, the functions
which take the value 1 on the whole space E and E’ respectively.

Proof. We put U(e) =e¢, ¢ R, and prove that ¢,/ = ¢, that is ¢,/ (s) = 1
for all se E'. From the isometric propertyliel = ¢3!l =1, that is max
|e’1(s)| =1. We can assume that max e/’ (s) = 1, for if min e/ (s) = — 1, it
suffices to consider —U () instead of U (%),

When ey (s) 7= 1 there exists an sp ¢ E’ such that e/’ (s)) =5, 0<b<1.
Let us consider a sphere K’ in E’ with radius ¢ and center at sy, and define
a continuous function.d’ (s) = d’ (sy, @, o) such that

@ (s) {= a if s=s,
=90 if seEE—K
and 0 =< d’' (s) <1 otherwise. If a>>0 is sufficiently large, ¢>>0 sufficiently
small and d’(s) decreases sufficiently rapidly, as s varies from s, then we
have
e +d 1 =a+bd

If weputd=U (d) max |[d®)]

or =— a, we have

a. Then according as max d(¥) = a

(1) Banach, Théorie des opérations linéaires, p. 170, Théoréme 3.
(2) Banach, loc. cit., p. 181, Théoréme 4.
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ey +-d ll=llet+dl =a+1,
or ley —d' l =a—b—2¢, le—dli.=a+1,
¢’ being positive such as 0 < b + ¢ < 1. These both are imposible.
Thus we have the resuired.
2°. Uf(ae) = ae’, where a is an arbitrary real number.
Proof. This is the direct consequence of the homogenuity of U(x). We
write the above relation simply by U(a) = a’.
3°. x(@® =0 implies x'(s) =0, where z’ = U(x).
Proof. x()=0 and 1 x1 =a. If we suppose min x'(s) = — b<0, then
we get the following contradiction.
a= llx—all=1x—al =a+b.
Thus we get the required.
4°. If a positive function x(¢) have its maximum at only one point, then
so is for its transform U (%) = 2" (s).
Proof. Let us assume that
max. x{) =x{) =a, 2 () =2x2(s1) =a, s 1.
Consider a continuous function &’ (s) = d’(so, @, ) as in the proof of 1°,
such that s; ¢ K’ and d’(s) = «'(s) for se K. If we defined y by
Y () =x(s)—d'(s),
then
Y ()=0, ¥ (s0) =0, max y(s)=a.
Further putting y = U-1(¥"), d = U-1(d’), we have
x@=y@®+d@®, y@®=0, max y{) =max d{) = e
If there are different points that make y (¢) and d(f) maximum, then x ()
=3 () + d () has two maximums at least, which contradicts the hypothesis.
If the maximum point of y (#) coincides with that of d(#), we have max x(¥)
= 2a, which is also impossible.
5°. By 4°, only one maximum point t, of x(f) =0 determines the maxi-
mum point s, of U(x) = (s), which gives us a transformation s, = ¢ (f,) from
E and E’. This transformation depends only on the positiveness and uni-
queness of maximum point of x(?).
Proof. Let x(#) and y () be arbitrary non-negative functions taking on-
ly one maximum value @ at the same point. Let us put
Uw=x, U=y,
max ¥’ (s) = " (so), max ' (s) = 3 (sy)
If sy =~ s;, then
2a=lx+yl =1l +y 1< 2,
which is impossible. Thus we get the required.
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6°. If x()=0, x(tp) =a. U@ =«, ¢{)=s0 where x(¢) needs not
be maximum at #, then z’'(so) = a.

Proof. Let us consider a continuous function d () = d(%, a, o) such as

d)=x@).
Putting x(¥) = y () + d(¥), we have
y®=0, y@)=0.
Putting U(y) =y, U) = d’, we have
@)=y +d @), yE=0
From max d(¢) = d({)) = max d'(s) = d’'(sp) = a, we get
a=lley+di=ley +dl
provided that ¢ is an arbitrarily small positive constant. Accordingly we have
ey’ (sp) = 0, that is 3" (sp) = 0, and then %’ (sp) = a.

7°. ¢ (¥) = s is bicontinuous.

Proof. Let A — E be an arbitrary closed set, and a continuous function
2@ =0 be such that
x@) §= 1, ?f teA,
<1, if teE-A.

Let U(x) =« and A’= (s; ' (s) = 1). Obviously A is a closed set in E’
and from 6° ¢ (A) = A’, therefore ¢ is continuous. The continuity of ¢-! is
clear.

We will now prove the theorem. If we define ordinal multiplication in
R and R/, then R and R’ become comrutative rings with units e and e’ res-
pectively, and the relations

Ny izl -y, 12y 01020091
hold, Thus R and R’ are normed rings.
6°. Implies U(xy) = U@®) U(y). For if ¢ (&) = s,
Uxp)(s) = () (&) = xRy @) = (U )) (s) (U () (s)-
Thus between R and R’ exists an isomorphism as rings. Let m and m’ be
the spaces of all maximal ideals of R and R’ respectively. Then the homeo-
morphisms
m~m, m~E m ~ FE
exist, which implies E ~ E’.

(8) Gelfand und G. silov, Uber verschiedene Methoden der Einfiihrung der Topolo-

gie in die Menge der maximalen Ideale eines normierten Ringes, Recueil math., S. 37
(1940).



