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Let E and E’ be metric compact spaces, and R and R’ be the sets of all

real continuous functions on E and E’ respectively. If ,we define addition

and multiplication by real numbers by the ordinary method, and the norm

by the maximum value of function, then R and R’ become Banach spaces.

We owe the following theorem to Banach. (I)

Theorem. In order that E and E’ be homeomorph, it is necessary and

sufficent that R and R’ are isometric.

The object of this paper is to give an elementary proof of the theorem.

Since necesity is evident, it remains to prove the sufficiency. Let V (x)
x’ be the isometric transformation fTOm R to R ’. If we put UGh,)= V (x)

--V (0), then U(x) defines an equivalent transformation(2) -from R to R’.
We requires several lemmas.

1. U(e)= e’, where e and e’ are units in R and R’, that is, the functions

which take the value 1 on the whole space E and E’ respectively.
Prof. We put U(e)- el’ R’, and prove that el’= e’, that s ea’(s)= 1

for all s E’. From the isometric property e e’l 1, that is max

[e’a (s)[ 1. We can assume that max e’(s) 1, for if min ea’(s) 1, it

suffices to consider U(x) instead of U(x),
When e’ (s) g= 1 there exists an so E’ such that ca’ (So) b, o b 1.

Let us consider a sphere K’ in E’ with radius a and center at So, and define

a continuous function, d’(s)--" d’ (So, a, a) such that

.=a if s=Sod" (s)
=o if seE’--K"

and o

_
d’ (s) < 1 otherwise. If a) b is sufficiently large, a :> 0 suciently

small and d’ (s) decreases sufficiently rapidly, a s varies from So, then we

have

Ile’+d’ =a+b.

If we put d U-X(d’), max [d(t)[ a. Then according as max d (t) a

or a, we have

(1) Banach, Th$orie des operations lirdaire, p. 170, Thor+me 3.
(2) Banach, loc. cit., p. 181, Thorme 4.
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Ilel’+d’ll Ile+dll =a+l,
or el’ d’ a b- e’, IIe d ,= a + 1,
e’ being positive such as o < b + e’ ( 1. These both are imposible.

Thus we have the resuired.

2. U(ae) ae’, where a is an arbitrary real mrrnber.
Proof. This is the direct consequence of the homogenuity of U(,x). We

write the above relation simply by U(a)= a’.
3. x (t) > 0 implies x’ (s) >- 0, where x’ U (x).
Proof. x (t) 0 and x a. If we suppose rain x’ (s) b , 0, then

we get the following contradiction.
a->- ilx--all Ilx’--all =a+b.

Thus we get the required.

4. If a positive function x(t) have its maximum at only one point, then

so is for its transform U(x)= x" (s).
Proof. Let us assume that

max. x (t) X(to) a, x’ (So) x’ (s) a, So
Consider a continuous function d’ (s)= d’ ,(So, a, a) as in the proof of 1,

such that s K’ and d’ (s) x’ (s) fors, K’. If we dfined y’ by

y’ (s) x’ (s) d’ (s),
then

y’(s)=>0, y’(s0)=0, max y’(s)=a.
Further putting y U-1 (y’), d U-1 (d’), we have

x(t)=y(t)+d(t), y(t)0, max y(t)=max d(t)=a.
If there are different points that make y (t) and d (t) maximum, then x(t)

=y (t)+ d (t) has two maximums at least, which contradicts the hypothesis.
If the maximum point of y (t) coincides with that of d (t), we have max x(t)
a, which is also impossible.
5. By 4, only one maximum point to of x(t)>-0 determines the maxi-

mum point So of U(x) x’ (s), which gives us a transforrnation so F (to) from
E and E’. This transformation depends only on the positiveness and uni-
queness of maximum point of x(t).,

Proof. Let x(t) and y (t) be arbitrary non-negative functions taking on-
ly one .maximum value a at the same point. Let us put

U(z) x’, U(y) y’,
max x’ (s) x’ (So), max y’ (s) y’ (s)

If so --/: sl, then

2a= llx+yll IIx’+y’ll<2a,
which is impossible. Thus we get the required.
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6 If x(t)O, x(to)=a. U(x)=x’, (to)=So where x(t) needs not

be maximum at to, then x’ (So)= a.

Proof. Let us consider a continuous function d (t)= d(to, a, a) such as

d (O <__ x(t).
Putting x (t) y (t) + d (t), we have

y (t) O, y (to) O.
Putting U(y) y’, U(d) d’, we have

x" (s) y" (s) + d’ (s), y’ (s)

_
O.

From max d (t) d (to) max d’(s) d’ (So) a, we get
a= Iley+dlt tlcy’+d’ll

provided that e is an arbitrarily small positive constant. Accordingly we have

y’ (So) 0, that is y’ (So) 0, and then x’ (So) a.

7. (t) s is bicontinuous.

Proof. Let A c E be an arbitrary closed set, and a continuous function

x (t)

_
0 be such that

x(t) I=1’ if teA,
i<1, if t,E-A.

Let U(x) x’ and A’= (s;x’(s) 1). Obviously A is a dosed set in E’
and from 6 (A)= A’, therefore T is continuous. The continuity of -1 is

clear.
We will now prove the theorem. If we define ordinal multiplication in

R and R’, then R and R’ become comfiautative rings with units e and e’ res-

pectively, and the relations

IlXyllllx.II Ityll, IIX’y’llllX’ll tly’ll

hold, Thus R and R’ are normed rings.

6. Implies U(xy)= U(x)U(y). For if (t)=. s,

(Uxy)) (s) (xy) (O x(t)y (t) (u(x)) (s) (U(y)) (s).
Thus between R and R’ exists an isomorphism as rings. Let m and m’ be
the spaces of all maximal ideals of .R and R’ respectively. Then the homeo-

morphisms

m.-m’, nt...E, m’.-.E"
exist, which implies E-- E’.

(3) Gelfand und G. silov, Ober verschiedene Methoden der EinfiJhrung der Topolo-
gie in die Menge der maximalen Ideale eines normierten Ringes, Recueil math., S. 37
(1940).


