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L. Introduction and the theorem. The problem of the unitary equivalence
of two bounded self-adjoint (s. a.) operators in Hilbert space was solved by
E. Hellinger®V and H. Hahn ;@ the result was extended by M. H. Stone® to
the case of not necessarily bounded s. a. operators. Later, K. Friedrichs®
and H. Nakano® obtained respectively new forms of the condition for the
unitary equivalence; and their results were respectively extended by F.
Wecken® and H. Nakano” to the case of general euclid space R (the space
in which all the axioms of the Hilbert space are satisfied except the axiom
of separability). The purpose of the present note is to give a condition of
the unitary equivalence in a form spomewhat more simple and more algebrai-
cal than those of the above cited authors. It is easy to see® that we may
reduce the problem to the case of bounded s. a. operators Ty and T;. For
any bonnded s. a. operator T let (T)’ be he totality of the bounded linear
operators commutative with T, and let (T)” be the totality of the bounded
linear operators commutative with every operator ¢ (T)’. Then (T)’ and
(T)” are operator rings (with complex multipliers) and satisfy the condition
@) if Se(T)’ ((T)”) the conjugate operator S* also ¢ (T)’ (T)”).

Moreover the ring (T)” is commutative. In terms of the operator-ring theory
our result reads as follows.

Theorem. For the unitary equivalence of T; and T: it is necessary and
sufficient that the ring (T;)’ is isomorphic (with complex multipliers) to the
ring (T2)’ by a correspondence C which maps T; onto T; and which maps
conjugate operators onto conjugate operators.
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2. Proof of the theovem. The necessity is evident. We will prove the
sufficiency. The isomorphism C maps s. a. operators onto s. a. operators and
positive definite operators onto positive definite operators. The latter fact
may be proved by taking the square root of the positive definite operator.
We will wrie A =B if the operator (A-B) is positive definite. Let (T} be
a sequence of s. a. operators e (Ty)” such that T =<Tp=..=Tik=..as
a. operators ¢ (Ty)”, and let Tys «— T2» by the isomorphism C, then we
have
(@)  strong limit Ty == strong limit Te, by C

n—% N—X
This results from the fact that the strong limit Tys = sup Tin in (TP” (in

n-+%

the sense of the semi-order ), and hence the strong limit Ty, = ?zgp Tan in
70 ”:
(T2)”. Thus we have the

Lemma. Let Ty = f AdE; (1) and T, = jxdE, () be the spectral resolu-
tion of Ty and T, then if G (1) denotes the characteristic function of a Borel
measurable set A on (-, ©)
® G~ [GWED—GCT)~ [GDED byC.

It is easy to see, by the isomorphism C, that the dimensions of the closed
linear manifolds N(Ty) = {x; T1 # = 0}, N(T3) = {y; Ty = 0} are the same.
We put, for any x-<RON(Ty)

Mr;(x) = (F(T)x = fF(l)dEl(l)x;f [ FA) | 2d 1 E{(4) x 1l 2< o0, where

F (A) denote complex-valued Borel measurable functions}

As is well-known, Mt; (X) is a separable closed linear manifold determined
by the set of elements {E; (A)x}, — 0 < A< o0; it reduces both E; () and Ty
viz. the projection P (Mt (x)) upon the manifold Mr; (x) is commutative with
E; (%) and with T;. Let Pse(T:)’ be the operator which correspondsto P; =
P (Mr; (x)) by the isomorphism C, then P; is also a projection and P;R < RO
N(T3). As Mr;(x") is orthogonal to Mr;(x) if X’ is in RON(Ty) and ortho
gonal to Mt (%), our theorem will be proved if we show that there exists
an isometric mapping V from PR onto P;R such that

(4) P1 T1 P1 =V-1 Pz Tz Pav.

First we will show that the closed linear manifold M = P;R is separable.
—Proof. Lett {ya.} be a complete orthonormal system in P;R, and we classi-

(9) The existence of the strong limit Tis may be proved following F. Riesz’s idea.
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fy the set {Mt3(yas)} as follows; Mt;(va) and Mtz (ys ) belong to the same
class if and only if there exists a finite number of elements ya1 = ya, Va ...,
Var = yg such that Mtz (ya +1) is not orthogonal to Mtz (ya). Let the set
of these classes k be K, then the closed linear manifold M® spanned by Mt
(y«) ek is a separable closed linear manifold < PsR which reduces T, and
Ps. Clearly PR = EKMU'); here the cardinal number of K must be at most
X,; This results from the tact that since Mt; (x) is separable there exists at
most countable number of mutually orthogonal projections P (1) ¢ (T;)’ which
saticfy P(1) P; = PiP (1) and hence, because of the isomorphism C, there
exists at most couatable number of mutually orthogonal projections P(2) e
(T2)’ which satisfy P (2)P; = P;P(2) = P(2).

As P2R is separable, there exicts an element y € PoR such th=t, for any
z ¢ P;R, the monotone ircreasing function ¢ (A)= 1l Ez(A)z Il 2 is absolutely con-
tinuous with respect to the monotone increasing function k£ ()= 1 E;(D)y 12
We will show that MT,(y)=PsR- Proof. If otherwise, the projection P (M,
(y)) satisfies
®) PPMr:(y)=PMr:() Pz = P(Mr2(¥)) # Pa.
Let Q be the projection ¢ (Ty)’ which corresponds to P (MT:(y)) by the iso-
morphism C, then we have
() 0+Q=QP, =PQ+P:
Since QR is separable, there exists xVeQR such that, for any z®» «QR, o (R)
= 1 E;(A)zW 112 is absolutely continuous with respect to k® ()= 1| E; () xV 1 2,
Then there exists Borel measurable set ¥ such that

@ fgllnEl(/l)xn’aEO, f%llE,l(Z)x(l)H2=0.

For, if otherwise, p; (A) = I E; (A) x 112 is absolutely continuous with respect to
£ {A). And since kD (2) is absolutely continuous with respect to p; (1) by Q
=P; Q=QP;, we would have MT; (X) = M1; xW) viz. Q=P;, contrary to (6.
Let G (2) be the characteristic function of ¥ then we have from (7)

G(TYx+0, G(THx»=0.

Hence we have G(T;)P; # 0 and, for any z0e QR, G(Tyz® =0 or G(Ty)Q
= 0, because o1 (3) is of the form f 1F(/1)d kD (2) and thus | G (T zW | 2=

f F()d I E;()xW 1 2=0. Therefore, by (3), G(Ts)Py# 0 and G (Ty)P(Mr,
(y)) = 0. This contradicts to the choice of y. Hence we must have Mt (y)
= PzR.

By a similar argument we may prove that the two monotone increasing
functions py (D) = 1 E; (D) x 12 and ps (D)= 1 Ex(A) y I| 2 are mutually absolutely
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continuous with respect to each other. Hence, by Radon-Nikodym’s theorem,
there exists a Borel measurable non-negative function F (1) such that

nd= [RDdm®, pd = [FO1dn®.

hence, if we put y(x) = f VEQ® dE:(A)y, we have

M1z (y () = Mr2(y) =P:R, oD =1E@x12=1E Dy I2%
Thus it is easy to see that the isometric operator V demanded in (4) is given
by

VF(TPx = F(Ty) y ().

Remork. Our heorem may easily be extended to the case where T; and
Ty are normal operators.

In concluding this note I express my hearty thanks to Dr. Kiyosi Ité for
the discussion of the result.



