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23. On the Potential Defined in a Domain.
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Tokushima Technical College.

(Comm. by T. TAKAGI, M. 3. n., April 12, 1949.)

Let us consider a simply connected "schlicht" domain R on the
z-plane whose boundary is a simple closed Jordan curve and an ad-
ditive class F composed o the sets of points contained in a bounded
closed subset E of R.

We suppose that a function z (0) of the sets is completely
additive with respect to any set belonging to F.

Then we shall define the potential of mass-distribution z on E
in the form

() V(z)= fg(z,)d(),
where g (z, ) is a Green’s function of the domain R with a pole
and z is any xed point in R.
The integral(i)has a meaning in the sense of the Stieltjes

Lebesgue-Radon’s integral.
From the definition(1),we easily obtain

/V(z)=0 ( is Laplacian)

at any point in the ee space R-E, o g(z,;)=0.
Now we shall study whether Gauss’ theorems on the potential

in the usual sense hold or the potentil (1) in ou definition,
succeeding to the idea o "Geen’s Geometry’’) discussed by Po.
Matsumoto.

Let the subset E be lying entirely in R. Then we can suitably
choose a constant c (0)such that the subset E is entirely enclosed
by the equipotential curve Co: g(z,zo)=C of Green’s function of R
with a pole z0

Thus, let us consider the arithmetic mean of the potential (1)by
integration on Co for which we shall use the non-Euclidean (hyper-
bolic) metric daz for the linear element.

Such an arithmetic mean by integration, we denote by A(V(}
for simplicity.

By Fubini’s theorem on the change of order of integration, we
have
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Next we represent conormally the domain R on the unit circle K
on the x-plane by a regular unction x=x(z)such that the pole z is
carried into the center 0 K.

In this representation, let any one point in E correspond to
a point $ in the circle K.

Then, it ollows that i we denote the inverse function of x(z)
by z(x), g(z(x), ) is a Green’s Cunction of the circle K on the x-
plane with a pole $. And if we denote the unction by g(x, ), we
have

1log ]---}- -/log 1-- $ x

Let us transform the integral g(z, )d in (2) into the integral

the x-plane by above conformal transformation under which the

hyperbolic linearelement is invariant and

ds
(4) daz :da: 1-- xl

where ds., is the linearelement in the usual sense.
Here, the equipotential curve Co is transformed into a circle K0

on the x-plane whose center is the origin and whose radius p=exp

(-c).
Accordingly we have by (3) and (4)

where

fogo (Z,) da=fgo(X,$.)da*

By elmentary reckoning,

(5) 2=p_..g--:- ds,= log
And by the mean-valued theorem o* the harmonic unction,

1 Iog 1-$xl ds=log 1 =0.(6) 2p oK0

Therefore, we have by (5) and (6)

l_p=
is the hyperbolic length of the circumference of 0

and also of C0.
By above result and (2), it can be proved that

(7) A{V(z)} c().
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Sincefdz() in (7) is the total mass of E, the following theorem

is established.
Theorem I. The average on the circumference of a non-Euclidean

circle g(z, Zo) c of the potential. (1) of masses lying
entirely inside of the circle is independent of their distf-
ibution within the circle, and is equal to their total mass
divided by the constant 1/c.

Here the constant 1/c can be regarded as the non-Euclidean radius
of the circle.

Moreover we have the following theorem similarly with above.
Theorem II. The average on the circumference of a non-Euclidean

circle g(z, Zo) c of the circumference af (1) of masses
lying entirely outside of the circle is equal to the value
of the potential at the center zo.

To get the last theorem, we have only to substitute
1(5’) - 0log-X_

for (5)
Thus we have

(7’)

ds log,- [p’:-[$l:-exp(-g(4,Zo))]

g(,z )=g(zo,)

A(V(z)} j;g(zo,) d/(): V(zo).


