62. Note on Pseudo-Analytic Functions.

By Eiichi SAKAI.

Mathematical Institute, Nagoya University. (Comm. by Z. SUETUNA, M. J. A., Oct. 12, 1949.)

1. Let $w=f(z)=u(x, \dot{y})+iv(x, y)$, z=x+iy, be an inner transformation in the sense of Storlow in a connected domain D. Denote by E a set, in D, such that D and the derived set E' of E have no point in common. We suppose that

- a) u_x , u_y , v_x , v_y exist and are continuous in $D^* = D E$,
- b) $J(z) = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} > 0$ at every point in D^* ,

c) the function q z defined as the ratio of major and minor axes of an infinitesimal ellipse with centre f(z), into which an infinitesimal circle with centre at every point z of D^* is transformed by f(z), is bounded in $D^*: q(z) \leq K$.

f(z) is then called pseudo-meromorphic (K) in $D^{(i)}$.

The purpose of the present note is to give some results concerning pseudoconformal representations and the cluster sets of pseudo-meromorphic functions.

2. Let w=f(z) be pseudo-meromorphic (K) in a connected domain D. It is known that the set of [z, w] where $w=f(z), z \in D$, defines a Riemann surface \emptyset , in the sense of Stoïlow, spread over the w-plane. By the theory of uniformizations of P. Koebe, there exists a function $z' = \varphi(w)$ analytic in \emptyset which maps \emptyset on a plane (*schlicht*) domain D' of the z'-plane. Consequently we get a function z z') (or z'(z)) which defines a pseudo-conformal mapping (K) between D and D', by eliminating w from w=f(z) and $z' = \varphi(w)$.

Thus we see that a function w=f(z), pseudo-meromorphic (K) in D, is a composition of a uniform function $w=\varphi^{-1}(z')$, analytic in D' and a univalent function z'(z), pseudo-regular (K) in D.

In view of the above consideration, it may be of some interest to investigate "Verzerrungssatz" concerning pseudo-conformal mapping (K). We first show that the properties of Fatou and Gross-Ahlfors hold for a bounded and univalent function, pseudo-regular (K).

Theorem 1. (Fatou's property). Let $w = f(z) = u(r, \theta) + iv(r, \theta)$, $z = re^{i\theta}$, be

¹⁾ S. Kakutani, Applications of the theory of pseudo-regular functions to the typeproblem of Riemann surfaces, Jap. Journ. of Math., vol. 13 (1937), pp. 375–392.

bounded, univalent and pseudo-regular (K) in |z| < 1. Then there exists the radial limit $\lim_{x \to 0} f(re^{i\theta}) = f(e^{i\theta})$ for almost all values of θ^{20} .

Proof. Consider the function

(1)
$$F(r,\theta) \equiv \int_{r_0}^r ds = \int_{r_0}^r \frac{ds}{|dz|} \cdot |dz| \qquad (z - re^{i\theta}, 0 < r_0 < r < 1),$$

which is measurable in Lebesgue's sense for $0 \leq \theta \leq 2\pi$, where

$$\frac{ds}{|dz|} = \frac{ds}{dr} = \left| \frac{\partial u(r, \theta)}{\partial r} + i \frac{\partial v(r, \theta)}{\partial r} \right|.$$

Applying Schwarz' inequality, we have from (1)

$$[F(r, \theta_{j})]^{2} \leq \int_{r_{0}}^{r} \left(\frac{ds}{|dz|}\right)^{2} dr \cdot \int_{r_{0}}^{r} dr$$

$$= (r - r_{0}) \int_{r_{0}}^{r} \left(\frac{ds}{|dz|}\right)^{2} dr^{3}$$

$$\leq (r - r_{0}) \int_{r}^{r} [q(z) + \sqrt{q(z)^{2} - 1}] \cdot J(z) dr.$$

By the assumption $q z \leq K$, it follows that

$$[F(r, \theta)]^2 \leq 2K \cdot \frac{r-r_0}{r_0} \int_{r_0}^r J(z) r dr.$$

Integrating the both sides with respect to θ from 0 to 2π , we get

$$\int_{0}^{2\pi} [F(\mathbf{r}, \theta)]^{2} d\theta \leq 2K \cdot \frac{1-r_{0}}{r_{0}} \int_{0}^{2\pi} \int_{r_{0}}^{1} J(z) r dr d\theta.$$

Since the double integral of the right member is the area of the image of $r_0 < |z| < 1$ by w=f(z),

(2)
$$\int_{0}^{2\pi} [F(\mathbf{r}, \theta_{j})]^{2} d\theta < M,$$

where M is a fixed constant independent of r.

Now, $F(r, \theta)$ is a non-negative and measurable function of θ and is monotone increasing as $r \to 1$. Consequently

$$\int_0^{2\pi} [F \theta]^2 d\theta = \lim_{r \to 1} \int_0^{2\pi} [F r, \theta]^2 d\theta < M,$$

where $F \theta \equiv \lim_{r \to 1} Fr$, θ). Hence $F(\theta) \equiv \int_{r_0}^{r} ds$ is finite for almost all values of θ ; so that the curves corresponding to all radii $z = re^{i\theta}(r_0 \le r \le 1, 0 \le \theta \le 2\pi)$ save exceptional values of θ on the *w*-plane are rectifiable. In other words, f(z) have radial limits along almost all radii.

Next, we shall state a theorem which will be used as a lemma in the following paragraph.

Theorem 2. (Gross-Ahlfors' property). Suppose that w = f(z) is univalent

²⁾ This extension of Fatou's theorem was given by Prof. K. Noshiro.

³⁾ See for instance R. Nevanlinna: Eindeutige analytische Funktionen (1936), p. 344.

E. SAKAI.

[Vol. 25,

bounded and pseudo-regular (K) in an open set D and let z_0 be a boundary point of D. Then, denoting by L'r) the total length of the image of θ_r by w=f(z), where θ_r is the common part of $|z-z_0|=r$ and D, we have $\lim_{t \to \infty} L'r = 0$.

Proof. By Ahlfors' method, as in the proof of the preceding theorem, we have

$$[L'r)]^{2} \leq 2\pi r \int_{0_{r}} [q(z) + \sqrt{q(z)^{2} - 1}] \cdot J(z) |dz| \qquad (z = z_{0} + re^{i\theta}, q(z) \leq K),$$

whence

$$\frac{[L'r]^2}{4K\pi r} \leq \int_{0_r} J'(z) \cdot r d\theta.$$

If we had $\lim_{r\to 0} L(r) > 0$, then there would exist two positive numbers r_0 and δ such that $L(r) > \delta > 0$ for $0 < r \le r_0$. Accordingly

$$\frac{\delta^2}{4K\pi} \int_r^{r_0} \frac{dr}{r_1'} < \int^{r_0} \int_{\theta_r} J(z) \cdot r dr d\theta_r$$
$$\frac{\delta^2}{4K\pi} \log \frac{r_0}{r} < A(r_0),$$

whence

where $A'(r_0)$ denotes the area of the image of the intersection of $|z-z_0| < r_0$ and D by w=f(z). Thus we would arrive at a contradiction, making r tend to zero.

Remark. The theorem holds good even if $\lim_{r \to 0} \int_r^{r_0} \frac{dr}{rq r}$ diverges where $q(r) = \max_{\substack{(z=z_0)=r\\ r \neq 0}} q(z)$. Further, taking as L(r) the total spherical length of the image of θ_r by w = f(z), we may obtain the relation $\lim_{r \to 0} L(r) = 0$ under the assumption that f(z) is *p*-valent in *D*. Using the line-element $d\tau$ and the area-element $d\omega$ on the Riemann sphere given by

$$d\tau = \frac{|dw|}{1+|w|^2}$$
 and $d\omega = \frac{dudv}{(1+|w|^2)^2} = \frac{J(z)dxdy}{(1+|w|^2)^2}$

respectively, we can enunciate the theorem in the following form;

Suppose that w=f(z) is p-valent and pseudo-meromorphic (K) in an open set D and let z_0 be a boundary point of D. Then, denoting by L(r) the total spherical length of the image of θ_r by w=f(z), where θ_r is the common part of $|z-z_0|=r$ and D, we have $\lim_{r \to 0} L(r)=0$.

We see that various theorems in the theory of conformal representation hold true if the mapping is pseudo-conformal (K), using the theorems and arguments similar as in M. Tsuji's paper⁴). For example, we can prove that

(9) 14

⁴⁾ M. Tsuji, On the théorems of Carathéodory and Lindelöf in the theory of con-[] formal representation, Jap. Journ. of Math., vol. 7 (1930), pp. 91-99.

Carathéodory's theorem concerning Jordan domain: "If w = f(z) maps a Jordan domain D conformally upon |z| < 1, the correspondence between |z| < 1 and D is of a one-to-one and bicontinuous manner their, boundaries included," holds even if the mapping is pseudo-conformal (K).

3. Using Theorem 2, we shall enunciate that the results of K. Noshiro⁵ hold for the case where w = f(z) is pseudo-meromorphic (K).

Theorem 3. Let w=fz be pseudo-meromorphic (K) in an arbitrary domain D. Suppose that α is a value belonging to $S_{z_0}^{(D)} - S_{z_0}^{(\sigma)}$ but not belonging to $R_{z_0}^{(C)}$, v where z_0 is a point on the boundary C of D. Then z_0 becomes necessarily accessible and α is an asymptotic value of fz at z_0 .

Proof. Since the case where z_0 is an isolated boundary point of D is obvious, we have only to consider the case where z_0 is non-isolated (whence, evidently, $S_{z_0}^{(C)} \neq 0$) and α is finite, for brevity. Then, as in the proof⁷) of the corresponding theorem of K. Noshiro, there are two positive numbers r and ρ such that $f(z)-\alpha \neq 0$ for $|z-z_0| \leq r$ inside D and further both

$$\bigcup_{\substack{0 \leq \xi - s_0 \mid \leq r}} S_{\xi}^{(D)} \left(\xi \in C \right) \quad \text{and} \quad \bigcup_{\substack{s \in (|s-s_0| = r) \cap \\ D}} f(z)$$

lie outside the circle $(c):|w-\alpha| < \rho$. On the other hand, as α is a cluster value of f z at z_0 , we may find a suitable point ζ_0 in $D_r \equiv \langle |z-z_0| < r \rangle \cap D$, whose image $w_0 = f_1\zeta_0$ lies within (c). Suppose that ζ_0 is contained in the component D_0 of D_r . Then f(z) is pseudo-meromorphic (K) and $f(z) \neq \alpha$ in D_0 ,

 $|f\zeta_0) - \alpha| < \rho \quad \text{and} \quad S_{\xi}^{(D_0)}(0 < |\xi - z_0| \leq r, \xi \in C)$ lies outside (e).

Now we consider the function $\omega = \psi(z) = \frac{1}{f(z) - \alpha}$, pseudo-regular (K) in D_0 , whose cluster values at each boundary point of D_0 , distinct from z_0 , lie all

(2) The cluster set $S_{z_0}^{(G)}$. This is the intersection $\bigcap_r M_r$, where M_r denotes the closure of the union $\bigcup_{\varepsilon} S_{\varepsilon}^{(D)}$ for all ε belonging to the common part of C and $0 < |z-z_0| < r$.

(3) The range of values $R_{z_0}^{(D)}$. This is the product of all value-sets \mathfrak{D} , of f(z) for $(|z-z_0| < r) \cap D$.

7) See 5), pp. 218-219.

⁵⁾ K. Noshiro, On the theory of the cluster sets of analytic functions, Journ. Fac. of Sci. Hokkaido Imp. Univ. (1) 6, No. 4 (1938), pp. 217-231.

⁶⁾ We associate with z_0 the following three sets of values:

⁽¹⁾ The cluster set $S_{z_0}^{(D)}$. This is the set of all values α such that $\lim_{v \to \infty} f(z_v) = \alpha$ with a sequance $\{z_v\}$ of points tending to z_v inside D. In other words, $S_{z_0}^{(D)}$ is identical with the intersection $\bigcap_r \overline{\mathfrak{D}}_r$, where \mathfrak{D}_r is the closure of the set \mathfrak{D}_r of values taken by w=f(z) inside the common part of $|z-z_v| < r$ and D.

E. SAKAI.

inside $|\psi| < \frac{1}{\rho}$ and such that $|\psi(\xi_0)| > \frac{1}{\rho}$. Consider the Riemannian image respect to ω_0 in W, where W is the complement of the angular domain bounded by two tangents from ω_0 of the circle $|\omega| < \frac{1}{\rho}$. Next, consider the star-region in Gross' sense formed by the sum of segments from ω_0 to irregular points along all half-lines $\arg(\omega - \omega_0) = \theta$ on φ_0 whose projections lie inside W. We shall show that the linear measure of the set of amplitudes of singular rays (by which we understand these half-lines meeting at a singular points in a finite distance) must be equal to zero. Since there is at most an enumerable number of algebraic singularities on Φ_0 , it is sufficient to show that the set of amplitudes of the singular rays with end points at transcendentral singularities is of linear measure zero. We must have the curve on the z-plane, joining the point ζ_0 , lying inside D_0 , to z_0 , whose image is the segment with the end point at a transcendental singularity. On the other hand, as in the proof of the theorem (Sternsatz) of Gross, it follows from Theorem 2 that the linear measure of the preceding set is equal to zero. Hence, almost all rays starting from ω_0 in W grow up to ∞ . Since obviously their counter-images must always lie inside D_0 , our theorem is proved.

Applying Theorems 2 (see Remark) and 3, we may give by a discussion similar to the $proof^{(5)}$ of the corresponding theorem of Noshiro's paper the following

Theorem 4. Suppose that w = f z is pseudo-meromorphic (K) in an arbitrary domain D and let z_0 be a non-isolated point on the boundary C of D. Suppose further that f z is at most p-valent near z_0 inside D. Then we have the relation $S_{z_0}^{(D)} = S_{z_0}^{(\sigma)}$.

Remark. As is well known, Theorem 4 has been improved in the case where w=f(z) is a uniform function meromorphic in D. It seems difficult for me to prove the following theorem, when f(z) is pseudo-meromorphic (K) in D:

Theorem I. (The first property of Beurling-Kunugui)⁹) Under the assumptions of the first half of Theorem 4, we have $B'S_{z_0}^{(D)} \subset S_{z_0}^{(\sigma)}$, where $B'S_{z_0}^{(D)}$) denotes the boundary of $S_{z_0}^{(D)}$, or, what is the same, $\mathcal{Q} = S_{z_0}^{(D)} - S_{z_0}^{(\sigma)}$ is an open set.

⁸⁾ See 5), pp. 222-223.

⁹⁾ K. Kunugui, Sur un théorème de MM. Seidel-Beurling, Proc. Imp. Acad. Tokyo, 15 (1939), pp. 27-32.

However the theorem may probably be true. Now, if Theorem I be true, the second theorem of Beurling-Kunugui¹⁰ may also hold true in our case without modifying the proof of the corresponding theorem in K. Kunugui's paper:

Theorem II. (The second property of Beurling-Kunugui) Suppose that $\mathcal{Q} = S_{z_0}^{(D)} - S_{z_0}^{(O)}$ is non-empty, in addition to the assumptions of Theorem 1, and denote by \mathcal{Q}_n and connected component of \mathcal{Q} . Then $R_{z_0}^{(D)}$ includes every value, with two possible exceptions, belonging to \mathcal{Q}_n .

¹⁰⁾ K. Kunugui, Sur un problème de M. A. Beurling, Proc. Imp. Acad. Tokyo, 16 (1940), pp. 361-366.