38. Note on the Envelope of Regularity of a Tube-Domain.

By Sin Hitotumatu.
Mathematical Institute, Tokyo University. (Comm. by K. Kunugi, M.J.A., July 12, 1950.)

§1. Introduction.

In the space of n complex variables $\left(z_{1}, \ldots, z_{n}\right)$, there exists a domain B, such that any function analytic in B has an analytic continuation over the domain D which is strictly larger than B. Such D is called an analytic completion of B. For any domain B, there corresponds a domain $\mathbf{H}(B)$ called its envelope of regularity, or maximal analytic completion, such that ${ }^{1)}$
(i) $\mathbf{H}(B)$ is an analytic completion of B, and
(ii) $\mathbf{H}(B)$ is a domain of regularity, i.e. there exists a function which cannot be continued beyond $\mathbf{H}(B)$.

The geometrically explicit form of the envelope of regularity for a given domain still remains almost unknown. One of the few results concerning this branch is the following due to S . Bochner ${ }^{\text {2 }}$:

Theorem 1. The envelope of regularity of a tube-domain T is its convex hull (convex closure) $\mathrm{C}(T)$. Here the tube-domain means the point set which can be written in the form
(1) $T=\left\{\left(z_{j}=x_{j}+i y_{j}\right) \mid\left(x_{1}, \ldots, x_{n} \in S,\left|y_{j}\right|<\infty,(j=1, \ldots, n)\right\}\right.$.
where S is a domain in the real n-dimensional space $\left(x_{1}, \ldots, x_{n}\right)$, and S is called the base of T.

It seems quite natural that this theorem should be conjectured from the facts that the mapping $w_{j}=\exp z_{j}$ transformes T into a covering surface over a Reinhardt domain in $\left(w_{j}\right)$-space, and that the Reinhardt domain of regularity is convex in logarithmic sense. But his original proof is based upon the expansion of the

1) P. Thullen: Die Regularitätshüllen. Math. Ann. 106 (1932) 64-76. H. Cartan-P. Thullen: Regularitäts- und Konvergenzbereiche. Math. Ann. 106 (1932) 617-647.
2) S. Bochner : A theorem on analytic continuation of functions in several variables. Annals of Math. 39 (1938) 14-19.
S. Bochner-W.T. Martin. Several complex variables. Princeton 1948, Chap. V.
3) Cf. e.g. H. Cartan: Les fonctions de deux variables complexes et le problème de la représentation analytique.
analytic function in T in multiple Legendre polynomials, which seems to me too much complicated.
ln this note, we shall give a brief proof of theorem 1.

§2. General considerations.

From the definition of the tube-domain, it is evident that
Lemma 1. A domain B is a tube if and only if it admits the autoinorphisms

$$
\begin{equation*}
z_{j}^{*}=z_{j}+i c_{j} \quad(j=1, \ldots, n) \tag{2}
\end{equation*}
$$

where c_{j} are arbitrary real constants.
Lemma 2. The envelope of regularity $\mathbf{H}(T)$ of a tube T is also a tube.

Proof. If a domain B is transformed onto itself by an analytic automorphism, its envelope of regularity $\mathbf{H}(B)$ is also transformed onto itself. ${ }^{4)}$ Thus applying this fact for the automorphism (2) of T, we see that $\mathbf{H}(T)$ also admits (2), i.e. $\mathbf{H}(T)$ is a tube.

Since the convex tube $\mathbf{C}(T)$ is a domain of regularity, ${ }^{51}$ we can conclude that $\mathbf{C}\left(T^{\prime}\right) \supseteq \mathbf{H}(T)$. In order to prove the converse, we have only to show that

Lemma 3. The base Δ of the tube $\mathbf{H}(T)$ is convex.

§3. A cross-shaped tube.

First, we consider a special case where $n=2$, and the base S of our tube T is cross-shaped, i.e. it consists of two rectangles $T_{a} \cup T_{b}$, where ${ }^{6 ;}$

$$
\begin{array}{ll}
T_{a}=\left\{\left(z_{1}, z_{2}\right) \mid\right. & \left.\left|x_{j}\right|<\alpha_{j}\right\} \tag{3}\\
T_{b}=\left\{\left(z_{1}, z_{2}\right) \mid\right. & \left.\left|x_{j}\right|<b_{j}\right\} \\
z_{j}=x_{j}+i y_{j}, & (j=1,2),
\end{array}
$$

and a_{j} and b_{j} are positive constants. Without any loss of generality, we can suppose that
(4)

$$
0<b_{1}<a_{1} \text { and } \quad 0<a_{2}<b_{2}
$$

Let λ be an arbitrary constant between 0 and 1 , and put

$$
\begin{align*}
& c_{j} \equiv \lambda a_{j}+(1-\lambda) b_{j} \quad, \quad(j=1,2), \tag{5}\\
& T_{o}=\left\{\left(z_{1}, z_{2}\right)| | x_{j} \mid<c_{j}\right\}
\end{align*}
$$

J. de Math. (9) 10 (1931) 1-114, Chap. V. § 2.
4) H. Cartan-P. Thullen: loc. cit. 1). Theorem 3, Corollary 1.
5) Bochner-Martin : loc. cit. 2). p. 91. This can be proved also by the facts that every bounded convex domain is a domain of regularity (cf. e.g. E.E. Levi: Annali di Mat. (3) 18 (1911) p. 79) and that a finite (not necessarily bounded) domain which is the limit of an increasing sequence of domains of regularity is also a domain of regularity. (cf. K. Oka, Tôhoku Math. J. 49 (1942) p. 27).
6) Of course this is a very special case, but from the results conserning the cross-shaped tube, we can prove lemma 3. (cf. §4).

Since $\mathrm{U}_{\lambda} T_{c}=\mathbf{C}\left(T_{a} \cup T_{b}\right)$, we have only to prove the following:
Theorem 2. Using the above notations, if a function $f^{\prime}\left(z_{1}, z_{2}\right)$ is analytic in $T_{a} \cup T_{b}$, it is also analytic in T_{c}.

Proof. Let h and l be fixed positive constants, and

$$
0<h<\operatorname{Min}\left(b_{1}, a_{2}\right)
$$

Denote the elliptic domains by

$$
\begin{align*}
& E_{j}\left(a_{j} ; l\right) \equiv\left\{z_{j}=x_{j}+i y_{j} \left\lvert\, \frac{x_{j}^{2}}{a_{j}^{2}}+\frac{y_{j}^{2}}{a_{j}^{2}+l^{2}}<1\right.\right\}, \tag{6}\\
& \Lambda(a ; l) \equiv E_{1}\left(a_{1} ; l\right) \text { (夫) } E_{2}\left(a_{2} ; l\right),
\end{align*}
$$

where means the direct product of two domains. Similarly we define $E_{j}\left(b_{j} ; l\right), \boldsymbol{\Lambda}(c ; l)$ etc. by substituting a_{j} for the corresponding letters b_{j}, c_{j} respectively. We define further D_{j} and Ω as the following :

$$
\begin{align*}
& D_{j}\left(a_{j}, h ; l\right) \equiv E_{j}\left(a_{j} ; l\right)-E_{j}(h ; l), \tag{7}\\
& \Omega(a, h ; l) \equiv D_{1}\left(a_{1}, h ; l\right) \otimes D_{2}\left(a_{2}, h ; l\right),
\end{align*}
$$

and $D_{j}\left(b_{j}, h ; l\right)$ and $\Omega(b, h ; l)$ are similarly defined. Now, since T_{a} and T_{b} contain $\Lambda(a ; l)$ and $\Lambda(b ; l)$ respectively, $f\left(z_{1}, z_{2}\right)$ is analytic in $\Omega(a, h ; l)$ and $\Omega(b, h ; l)$. By conformal mappings

$$
\begin{equation*}
w_{j}=\frac{-i}{l}\left[z_{j}+\left(z_{j}^{2}+l^{2}\right)^{\frac{1}{2}}\right]^{i}, \quad(j=1,2) \tag{8}
\end{equation*}
$$

the domains $D_{j}\left(a_{j}, h ; l\right)$ and $D_{j}\left(b_{j}, h ; l\right)$ are transformed univalently onto the circular rings

$$
\begin{equation*}
\varepsilon<\left|w_{j}\right|<\alpha_{j} \text { and } \varepsilon<\left|w_{j}\right|<\beta_{j} \tag{9}
\end{equation*}
$$

on the w_{j}-plane respectively, where

$$
\begin{align*}
& \alpha_{j}=\frac{1}{l}\left[a_{j}+\left(a_{j}^{2}+l^{2}\right)^{\frac{1}{2}}\right], \tag{10}\\
& \beta_{j}=\frac{1}{l}\left[b_{j}+\left(b_{j}^{2}+l^{2}\right)^{\frac{1}{2}}\right],
\end{align*}
$$

and

$$
\varepsilon=\frac{1}{l}\left[h+\left(h^{2}+l^{2}\right)^{\frac{1}{2}}\right]
$$

By the transformation (8), $f\left(z_{1}, z_{2}\right)$ turns into a function $\varphi\left(w_{1}, w_{2}\right)$ which is analytic in (9). $\quad \rho\left(w_{1}, w_{2}\right)$ can be expanded into a Laurent series of w_{1} and w_{2}, and since this series converges ${ }^{s)}$ in

$$
\begin{equation*}
\varepsilon<\left|w_{j}\right|<\gamma_{j}(l) \tag{11}
\end{equation*}
$$

where

$$
\log \gamma_{j}(l)=\lambda \log \alpha_{j}+(1-\lambda) \log \beta_{j}
$$

$\varphi\left(w_{1}, w_{2}\right)$ is also analytic in $\varepsilon<\left|w_{j}\right|<\gamma_{j}(l)$. By the inverse map-

[^0]pings of (8), $\varphi\left(w_{1}, w_{2}\right)$ reverses to $f\left(z_{1}, z_{2}\right)$, which is analytic in $\Omega(c(l), h ; l)$ where
\[

$$
\begin{equation*}
c_{j}(l)=\frac{l}{2}\left[\gamma_{j}(l)-\frac{1}{\gamma_{j}(l)}\right] . \tag{12}
\end{equation*}
$$

\]

From (10), (11) and (12), $c_{j}(l)$ satisfies the relation

$$
\begin{equation*}
\operatorname{arcsinh} \frac{c_{j}(l)}{l}=\lambda \operatorname{arcsinh} \frac{a_{j}}{l}+(1-\lambda) \operatorname{arcsinh} \frac{b_{j}}{l} . \tag{13}
\end{equation*}
$$

But on the other hand, we see from (4),

$$
b_{1}<c_{1}(l)<a_{1} \quad \text { and } \quad a_{2}<c_{2}(l)<b_{2}
$$

then

$$
\Theta_{1} \equiv E_{1}(h ; l) \otimes E_{2}\left(c_{2}(l) ; l\right)
$$

and

$$
\Theta_{2} \equiv E_{1}\left(c_{1}(l) ; l\right) \otimes E_{2}(h ; l)
$$

are contained completely in T_{b} and T_{a} respectively. Therefore $f\left(z_{1}, z_{2}\right)$ is analytic in

$$
\Omega(c(l), h ; l) \cup \bar{\Theta}_{1} \cup \bar{\Theta}_{2}=\Lambda(c(l) ; l)
$$

for arbitrary i, where $\bar{\Theta}$ is the closure of Θ. Now from (13) we obtain
and

$$
\begin{equation*}
\lim _{l \rightarrow \infty} c_{j}(l)=c_{j} \tag{14}
\end{equation*}
$$

$$
\lim _{l \rightarrow \infty} \Lambda(c(l) ; l)=T_{c},
$$

where c_{j} is defined in (5). Thus our theorem 2 is proved.
§4. The general case.
Now we consider the general case. Owing to the conclusion obtained in the previous section, we have only to prove the following theorem :

Theorem 3. Let J be a domain in a real n-space $\left(x_{1}, \ldots, x_{n}\right)$. Moreover, let us suppose that if 1 contains a cross, it also contains the convex hull of the cross. Here the cross means two line-segments intersecting orthogonally at their centers with each other. Then it is concluded that Δ is convex.

Proof. First we consider the case $n=2$. If Δ is not convex, there exist three points P_{0}, P_{1}, P_{2} such that Δ contains the linesegments $P_{0} P_{1}$ and $P_{1} P_{2}$ but not $P_{0} P_{2}$. Let X be a point on $P_{1} P_{2}$ moving from P_{1} toward P_{2} and further let X_{0} be the first point of X, for which there is at least one point on $P_{0} X_{0}$ which is not contained in Δ. Let U be the point on $P_{0} X_{0}$, which is nearest to P_{0} and lying on the boundary of Δ. Even if, in the neighbourhood of $U, P_{0} X_{0}$ and the boundary of Δ have a line-segment in common, by a small displacement we can construct a line-segment $P V Y$ such that

No. 7.] Note on the Envelope of Regularity of a Tube-Domain.
(i) the segment $P V$ is contained in J, except V.
(ii) V is the only boundary point of Δ on $P Y$, in a sufficiently small neighbourbood of V.

Let B be a point on $V Y$ sufficiently near to V, then B is an inner point of Δ, and the center M of $P B$ lying on $P V$ is also an inner point of d. Therefore we can construct a line-segment $A M C$ completely interior to A, orthogonal to $P M V B Y$ and $A M=M C$. Such $P B$ and $A C$ build up a cross, and V is an inner point of its convex hull, i.e. the rhombus $A B C P$. Rotating this cross around M, we finally obtain a cross $P^{\prime} B^{\prime}$ and $A^{\prime} C^{\prime}$ completely interior to A, and having V as the inner point of its convex hull $A^{\prime} B^{\prime} C^{\prime} P^{\prime}$. This means that V must be an inner point of J, which is a contradiction.

In the case for general n, when Δ contains a cross, the section δ of Δ by the plane $I I$ determined by the cross, satisfies the condition of this theorem for $n=2$; therefore it is convex. Since the plane $I I$ is chosen arbitrarily, the domain Δ has the property that its section δ by any plane $I I$ intersecting to Δ is always convex. It is evident that such Δ is convex, and thus our theorem is proved.

Since the base Δ in Lemma 3 satisfies the condition described in Theorem 3, it is convex. Therefore Lemma 2 and then Theorem 1 is completely proved.

[^0]: 7) For the function (ζ), ${ }^{\frac{1}{2}}$ we take the branch whose value is +1 at $\varsigma=1$.
 8) H. Tietze: Über den Bereich absoluter Konvergenz von Potenzreihen mehrerer Veränderlichen. Math. Ann. 99 (1928) 181-182.
