35. Notes on Fourier Analysis (XXXII).

On the Summability (C, 1) of the Fourier Series.

By Noboru Matsuyama.
Mathematical Institute, Tôhoku University. (Comm. by K. Kunugi, M.J.A., July 12, 1950.)

1. Let $f(x)$ be an L-integrable and periodic function with period 2π. Concerning the summability $(C, 1)$ of the Fourier series of $f(x)$, Hahn ${ }^{1)}$ has proved the following theorem.

Theorem A. If

$$
\begin{gather*}
\int_{0}^{t} \varphi(x, u) d u=o(t) \quad(t \rightarrow o), \tag{1}\\
\left.\varphi(x, u)=\frac{1}{2}\{f x+u)+f(x-u)-2 f(x)\right\},
\end{gather*}
$$

where
then the Fourier series of $f(x)$ is summable $(C, 1+\delta)(\delta>0)$, but not necessary summable $(C, 1)$.

Prasad ${ }^{2)}$ has replaced (1) by the condition that

$$
\begin{equation*}
\int_{0}^{t} \varphi(x, u) u^{-1} d u \tag{2}
\end{equation*}
$$

exists by the Cauchy's sense.
On the other hand Hsiang ${ }^{3}$) has recently proved the following theorem :

Theorem B. If for any $\eta>0$,

$$
\begin{equation*}
\int_{0}^{t} \boldsymbol{p}(x, u) u^{-(1+\eta)} d u \tag{3}
\end{equation*}
$$

exists by the Cauchy's sense, then the Fourier series of $f(x)$ is summable $(C, 1)$ but not necessary summable $\left(c,(1+\eta)^{-1}-\varepsilon\right) \varepsilon>0$.

Our object of this paper is to prove the following theorems.
Theorem 1. If for any $\delta>0$,

$$
\begin{equation*}
\int_{0}^{t} \varphi(x, u)(\log 1 / u)^{1+6} u^{-1} d u \tag{4}
\end{equation*}
$$

exists by the Cauchy's sense, then the Fourier series of $f(x)$ is summable $(C, 1)$ at the point x.

Theorem 2. If for any $s \geqq 0$,

$$
\begin{equation*}
\int_{0}^{t} p(x, u)(\log 1 / u)^{x} u^{-1} d u \tag{5}
\end{equation*}
$$

exists by the Cauchy's sense, then the Fourier series of $f(x)$ is summable $(R, \log , 1)$ at the point x.

1) Hahn : Jour. Deuts. Math. Ver., 25 (1916).
2) Prasad: Math. Zeits., 40 (1935).
3) Hsiang : Duke Math. Jour., 13 (1946).

Theorem 3. For any $0 \leqq s<1$ there exists a function $f(x)$ satisfing the condition (5) but the Fourier series of $f(x)$ is not summable $(C, 1)$ at the point x.
2. Lemma. If for any $s>0$ the integral (5) exists by the Cauchy's sense, then
and

$$
\begin{aligned}
& \int_{0}^{t} \varphi(u) d u=o\left(t(\log 1 / t)^{-s}\right) \\
& \int_{0}^{t} \varphi(u) u^{-1} d u=o\left((\log 1 / t)^{-s}\right)
\end{aligned}
$$

Proof. Let us put

$$
\varphi_{\varepsilon}(t)=\int_{\varepsilon}^{t} \varphi(u)(\log 1 / u)^{s} u^{-1} d u
$$

for any ε. Then for any $\eta>0$, there exist $t_{1}=t_{1}(\eta)$ such that $\left|\Phi_{\varepsilon}(t)\right|<\eta$ for $0<\varepsilon \leqq t \leqq t_{1}$.

$$
\begin{aligned}
& \int_{\varepsilon}^{t} \varphi(u) d u=\int_{\varepsilon}^{t} \varphi(u) \frac{1}{u}(\log 1 / u)^{s} \frac{u}{(\log 1 / u)^{s}} d u \\
& =\Phi_{\varepsilon}(t) t(\log 1 / t)^{-s}-\int_{\varepsilon}^{t} \Phi_{\varepsilon}(u)\left\{(\log 1 / u)^{-s}+s(\log 1 / u)^{-(s+1)}\right\} d u
\end{aligned}
$$

Consequently if $\varepsilon \leqq t \leqq t_{1}$, then

$$
\begin{aligned}
& \left.\left|\int_{\varepsilon}^{t} \varphi(u) d u\right| \leqq \eta t(\log 1 / t)^{-s}+\int_{\varepsilon}^{t} \eta\left\{(\log 1 / u)^{-s}+s(\log 1 / u)^{-(s+1)}\right)\right\} d u \\
& \leqq \eta t(\log 1 / t)^{-s}+\eta t\left\{(\log 1 / t)^{-s}+s(\log 1 / t)^{-(s+1)}\right\} \leqq \eta t(\log 1 / t)^{-s}
\end{aligned}
$$

Thus the first half of Lemma is proved. Remaining part is proved by the similar way.

Let $\sigma_{n 2}(x)$ be the $(C, 1)$-mean of the Fourier series of $f(x)$ at the point x. Then we have

$$
\begin{align*}
& \text { (6) } \quad \sigma_{n 2}(x)-f(x)=\frac{1}{2 \pi n} \int_{0}^{\pi} \varphi(x, t)\left(\frac{\sin (n+1) t / 2}{\sin t / 2}\right)^{2} d t \tag{6}\\
&= \frac{1}{2 \pi n} \int_{0}^{\pi} \varphi(x, t)\left(\frac{\sin n t}{t}\right)^{2} d t+o(1) \\
&=\frac{1}{2 \pi} \int_{0}^{\pi} \varphi_{1}(t) \sin 2 n t / t^{2} d t+\frac{1}{\pi n} \int_{0}^{\pi} \varphi_{1}(t) \sin ^{2} n t / t^{3} d t+o(1)
\end{align*}
$$

where

$$
\varphi_{1}(t)=\int_{0}^{t} \boldsymbol{\varphi}(x, u) d u
$$

From Lemma and (4),

$$
\varphi_{1}(t) / t^{2}=o\left((\log 1 / t)^{1+\delta} / t\right)
$$

Hence by the Riemann Lebesgue's theorem the first term of the right hand side of (6) is $o(1)$. On the other hand by the same reason

$$
\varphi_{1}(t) / t=o\left((\log 1 / t)^{1+\delta}\right)=o(1) \quad(t \rightarrow 0)
$$

Consequently, by the Fejér's theorem, the second term of the right hand side of (6) is $o(1)$.

Thus Theorem 1 is proved.
For the proof of Theorem 2 it is sufficient to prove the case $s=0$. Let $R_{n}(x)$ be the $(R, \log , 1)$-mean of the Fourier series of $f(x)$ at the point $\left.x .{ }^{4}\right)$

$$
R_{n}(x)-f(x)=\frac{1}{\pi} \frac{n}{\log n} \int_{0}^{\pi} \varphi(t) L_{1}(n t)+o(1)
$$

Now

$$
\begin{gathered}
\frac{n}{\log n} \int_{\varepsilon}^{\pi} \varphi(t) L_{1}(n t) d t=\frac{n}{\log n}\left\{\left[\Phi_{z}(t) t L_{1}(n t)\right]_{\varepsilon}^{\pi}-\int_{\varepsilon}^{\pi} \Phi_{z}(t) L_{0}(n t) d t\right\} \\
\quad=\frac{n}{\log n}\left\{\Phi_{z}(\pi) \pi L_{\mathrm{I}}(n \pi)-\int_{\varepsilon}^{\pi} \Phi_{\mathrm{z}}(t) \sin n t / n t d t\right\} \equiv P-Q
\end{gathered}
$$

say, where

$$
\Phi_{\varepsilon}(t)=\int_{\varepsilon}^{t} \Phi(u) u^{-1} d u
$$

We have

$$
P=O\left(\frac{n}{\log n}\right) O(1 / n \pi)=O(1 / \log n)=o(1)
$$

Secondly

$$
Q=\frac{n}{\log n}\left\{\int_{\varepsilon}^{1 / 22}+\int_{1 / 22}^{t_{1}}+\int_{t_{1}}^{\pi}\right\} \Phi_{\varepsilon}(t) \sin n t / n t d t \equiv Q_{1}+Q_{2}+Q_{3}
$$

say. For $\varepsilon \leqq t \leqq t_{1}$, we have

$$
\begin{aligned}
& \left|\Phi_{\varepsilon}(t)\right|=\left|\int_{\varepsilon}^{\pi} \varphi(u) u^{-1} d u\right|<\eta \\
& \left|Q_{1}\right| \leqq \frac{n}{\log n} \int_{\varepsilon}^{1 / n z} \eta n t / n t d t \leqq \eta / \log n=o(1) \\
& \left|Q_{2}\right| \leqq \frac{n}{\log n} \int_{1 / n}^{t_{1}} \eta / n t d t \leqq \eta / \log n t(\log n t)=\eta+o(1) \\
& \left|Q_{3}\right| \leqq \frac{n}{\log n} \int_{t_{1}}^{\pi} O(1) / n t d t=O(1 / \log n)=o(1)
\end{aligned}
$$

That is,

$$
\frac{n}{\log n} \int_{\varepsilon}^{\pi} \varphi(t) L_{1}(n t) d t=o(1)
$$

uniformly in ε. Thus the theorem is proved.
3. Let $\left\{p_{k}\right\}$ be an increasing sequence of positive integers and $\left\{C_{k}\right\}$ be a positive sequence, especially $c_{1}=0$. We define the functions $F^{r}(t)$ and $\varphi_{1}(t)$ in the following manner.

If t is a point of the interval $J_{k} \equiv\left(\pi / p_{k}, \pi / p_{k-1}\right)$, let

$$
\begin{aligned}
& F(t)=c_{k} \sin p_{k} t \\
& \varphi_{1}(t)=F(t) t(\log 1 / t)^{-s} \\
& 0 \leqq s<1
\end{aligned}
$$

and
where
4) Wang : Tôhoku Math. Jour., 40 (1935).
1° The condition for which $\varphi_{1}{ }^{\prime}(t) \in L(0, \pi)$.

$$
\begin{aligned}
& \int_{0}^{\pi}\left|\varphi_{1}^{\prime}(t)\right| d t \leqq \sum_{k=1}^{\infty} \int_{J_{k}} \mid c_{k} p_{k} \cos p_{k} t t(\log 1 / t)^{-s} \\
& +c_{k} \sin p_{k} t\left\{(\log 1 / t)^{-s}+s(\log 1 / t)^{-(s+1)}\right\} \mid d t
\end{aligned}
$$

$$
\leqq \sum_{k=1}^{\infty} c_{l c} p_{l c} \int_{\pi / p_{k}}^{\pi / p_{k}-1} t(\log 1 / t)^{-s} d t+\sum_{k=1}^{\infty} c_{k} \int_{\pi / p_{k}}^{\pi / p_{k}-1}\left\{(\log 1 / t)^{-s}+s(\log 1 / t)^{-(s+1)}\right\} d t
$$

$$
\leqq \sum_{k=1}^{\infty} c_{k} p_{k c}\left(\log p_{k-1}\right)^{-s} p_{k-1}^{-2}+\sum_{k=1}^{\infty} c_{k}\left\{\left(\log p_{k-1}\right)^{-s}+s\left(\log p_{k-1}\right)^{-(s+1)}\right\} / p_{k-1}
$$

$$
\begin{equation*}
\leqq \sum_{k=1}^{\infty} c_{k} p_{k} p_{k-1}^{-2}\left(\log p_{k-1}\right)^{-s} \tag{7}
\end{equation*}
$$

Consequently if the series (7) is convergent then $\varphi_{1}{ }^{\prime}(t)$ is integrable. Hence we define $\varphi(t)$ by $\varphi(t) \equiv \varphi_{t}(t)=c_{k} p_{k} \cos p_{k} t \cdot t(\log 1 / t)^{-3}+c_{k} \sin p_{k} t\left\{(\log 1 / t)^{-s}+s(\log 1 / t)^{-(s+1)}\right\}$ for $t \leftarrow J_{k}, \varphi(-t)=\varphi(t)$ and $\varphi(2 \pi+t)=\varphi(t)$ for any t. Since $\varphi(t)$ is an integrable and even periodic function with period 2π, we can write

$$
\varphi(t) \sim \sum_{0}^{\infty} a_{n} \cos n t .
$$

Especially

$$
a_{0}=0, \text { for } \varphi_{1}(\pi)=0 .
$$

We consider the summability of the Fourier series of $\varphi(t)$ at $t=0$, and we prove that it is not summable $(C, 1)$.
2° The condition for which (5) is satisfied.

$$
\begin{gathered}
\int_{\varepsilon}^{t} \varphi(t)(\log 1 / t)^{s} / t d t=\left[\varphi_{1}(t)(\log 1 / t)^{s} / t-\varphi_{1}(\epsilon)(\log 1 / \varepsilon)^{s} / \varepsilon\right] \\
\quad+\int_{\varepsilon}^{t} \mathscr{\varphi}_{1}(t)\left\{t^{-2}(\log 1 / t)^{s}+s t^{-2}(\log 1 / t)^{s-1}\right\} d t,
\end{gathered}
$$

where if

$$
\begin{aligned}
& \varepsilon \in J_{k} \\
& \boldsymbol{\rho}_{1}(\varepsilon)(\log 1 / \varepsilon)^{s} / \varepsilon=F(\varepsilon)=c_{k} \sin p_{k} \varepsilon .
\end{aligned}
$$

Hence the function $\varphi(t)$ satisfies the condition (5) if there exists

$$
\lim _{\epsilon \rightarrow 0} \int_{\varepsilon}^{t} \varphi_{1}(t) t^{-2}(\log 1 / t)^{s} d t
$$

and.

$$
c_{k}=o(1)
$$

For any $t \in J_{k}$

$$
\begin{gathered}
\left|\int_{e}^{t} \mathcal{p}_{1}(u)(\log 1 / u)^{s} u^{-2} d t\right| \leqq \sum_{i=k}^{\infty} \mid \int_{\pi / p_{i}}^{\pi / p_{i}-1} c_{i} \sin p_{i} u t u d u \\
\leqq \frac{1}{\pi} \sum_{i=k}^{\infty} c_{i} p_{i} / p_{i} \leqq \frac{1}{\pi} \sum_{i=1}^{\infty} c_{i} .
\end{gathered}
$$

Consequently if $\sum c_{i}<\infty$, then $\boldsymbol{\varphi}(t)$ satified the condition (5).
3° The condition for which the Fourier series is not summable $(C, 1)$ at $t=0$.

$$
\begin{aligned}
& 2 \pi\left(\sigma_{p_{k}}(0)-f(0)\right)=\int_{0}^{\pi} \varphi_{1}(t) t^{-2} \sin p_{k} t d t+o(1) \\
& \quad=\left(\int_{0}^{\pi / p_{k}}+\int_{\pi / p_{k}}^{\pi / p_{k-1}}+\int_{\pi / p_{k-1}}^{\pi}\right)+o(1) \equiv S_{1}+S_{2}+S_{3}+o(1)
\end{aligned}
$$

say.

$$
\begin{aligned}
S_{1}= & \sum_{i=k+1}^{\infty} \int_{\pi / p_{i}}^{\pi / p_{i-1}} c_{i} \sin p_{i} t(\log 1 / t)^{-s} / t d t \\
& =\sum_{i=k+1}^{\infty} \frac{\boldsymbol{c}_{i}}{2} \int_{\pi / p}^{\pi / p_{i-1}}\left\{\cos \left(p_{i}-p_{k}\right) t+\cos \left(p_{i}+p_{k}\right) t\right\}(\log 1 / t)^{-s} / t d t \\
S_{1} & \leqq \sum_{i=k+1}^{\infty} \frac{c_{i}}{2} p_{i}\left(\log p_{i}\right)^{-s}\left(\frac{1}{p_{i}-p_{k}}+\frac{1}{p_{i}+p_{k}}\right) \\
& =\sum_{i=k+1}^{\infty} \frac{c_{i} p_{i}}{2\left(\log p_{i}\right)^{s}} p_{i}^{2}-p_{i} p_{i}^{2}=A \sum_{i=k+1}^{\infty} c_{i}\left(\log p_{i}\right)^{-s} \\
S_{2}= & \frac{c_{k}}{2} \int_{\pi / p_{k-1}}^{\pi / p_{k-1}} \frac{1-\cos 2 p_{k} t}{t(\log 1 / t)^{s}} d t \\
& =\frac{c_{k}}{2}\left[\left(\log p_{k-1}\right)^{1-s}-\left(\log p_{k}\right)^{1-s}\right]+c_{k}\left(\log p_{k}\right)^{-s} \\
\left|S_{3}\right| & \leqq A \sum_{i=1}^{k-1} \frac{c_{i}}{2}\left(\log p_{i}\right)^{-s} .
\end{aligned}
$$

Hence if $S_{1}=o(1), S_{2} \rightarrow \infty$, and $S_{3}=O(1)$ for $k \rightarrow \infty$, the Fourier series of $\varphi(t)$ is not summable $(C, 1)$ at $t=0$. Or

$$
\begin{aligned}
& \sum_{i=1}^{\infty} c_{i}\left(\log p_{i}\right)^{-s}<\infty, \\
& \boldsymbol{c}_{k}\left[\left(\log p_{k-1}\right)^{1-s}-\left(\log p_{k}\right)^{1-s}\right] \rightarrow \infty(k \rightarrow \infty) .
\end{aligned}
$$

Let

$$
p_{k}=p_{1}{ }^{2^{k-1}}=2^{2^{k}} \quad \text { and } \quad c_{k}=2^{-z k(1-s)}, 0<\varepsilon<1,
$$

then all conditions $1^{\circ}-3^{\circ}$ are satisfied and then Theoren 3 is proved.

