37. On the Simple Extension of a Space with Respect to a Uniformity. III.

By Kiiti Morita.

(Comm. by K. KUNUGI, M.J.A., April 12, 1951.)

In the present note we discuss the completion of a space with respect to a uniformity. We make use of the same terminologies and notations as in the previous notes.¹⁾

§ 1. The completion for the general case. Let $\{\mathfrak{U}_{\alpha} : \alpha \in \mathcal{Q}\}$ be a uniformity of a space R. Then the simple extension R^* of R with respect to $\{\mathfrak{U}_{\alpha}\}$ is complete with respect to the uniformity $\{\mathfrak{U}_{\alpha}^*\}$, in case $\{\mathfrak{U}_{\alpha}\}$ is a regular uniformity agreeing with the topology of $R^{2^{2}}$. In the general case the simple extension R^* , however, is not always complete with respect to $\{\mathfrak{U}_{\alpha}^*\}$. We shall treat such a case in the following lines. In this case we construct the simple extension R^{**} of R^* with respect to the uniformity $\{\mathfrak{U}_{\alpha}^*\}$. Here we shall remark

Lemma 1. The set of G^{**} for all open sets G of R is a basis of open sets of R^{**} .

In case R^{**} is not complete we construct further the simple extension of R^{**} , and so on. We carry out our construction by transfinite induction. For the sake of convenience we write $R^{(0)}$, $R^{(1)}, R^{(2)}, \ldots$ instead of R, R^*, R^{**}, \ldots . Suppose that $R^{(\nu)}$ (and $G^{(\nu)}$ for open sets G of R) are defined for all ordinals ν less than an ordinal λ , and that $R^{(\nu)}$ are not complete, but with the following properties:

(1) For $0 \leq \mu < \nu$ we have $R^{(\mu)} < R^{(\nu)}$ and $G^{(\nu)} \cdot R^{(\mu)} = G^{(\mu)}$.

(2) $G \subset H$ or $G \cdot H = 0$ implies $G^{(\nu)} \subset H^{(\nu)}$ or $G^{(\nu)} \cdot H^{(\nu)} = 0$.

(3) $\{G^{(\nu)}; G \text{ open in } R\}$ is a basis of open sets of $R^{(\nu)}$.

(4) Each point of $R^{(\nu)} - R$ is closed in $R^{(\nu)}$.

- (5) $\mathfrak{U}_{\alpha}^{(\nu)} = \{ U^{(\nu)}; U \in \mathfrak{U}_{\alpha} \}$ is an open covering of $R^{(\nu)}$.
- (6) $\{S(x, \mathfrak{U}_{\alpha}^{(\nu)}); \alpha \in \Omega\}$ is a basis of neighbourhoods of each point x of $R^{(\nu)} R$.

Here G, H are open sets of R.

In case λ is not a limit-number, we define $R^{(\lambda)}$ as the simple extension of $R^{(\lambda-1)}$ with respect to the uniformity $\{\mathfrak{U}_{x}^{(\lambda-1)}; \alpha \in \mathcal{Q}\}$. Then it is easily seen that $R^{(\lambda)}$ satisfies the conditions (1), (2), (3), (5), (6) for $\nu = \lambda$. If x is a point of $R^{(\lambda)} - R^{(\lambda-1)}$, then x is clearly a closed set of $R^{(\lambda)}$. Let $x \in R^{(\lambda-1)} - R$. Then we have $\overline{x} \cdot R^{(\lambda-1)} = x$.

¹⁾ K. Morita: On the simple extension of a space with respect to a uniformity. I, II. these Proc. 27, No. 1, 2 (1951). These notes shall be cited with I., II. respectively.

²⁾ Cf. I. §5.

For $y \in R^{(\lambda)} - R^{(\lambda-1)}$, $x \in S(y, \mathfrak{U}_x^{(\lambda)})$ for any $\alpha \in \mathcal{Q}$ implies $x \in \overline{y}$, that is, x = y. Therefore the condition (4) holds for $\nu = \lambda$.

In case λ is a limit-number, we put

$$R^{(\lambda)} = \sum_{\nu < \lambda} R^{(\nu)}$$
, $G^{(\lambda)} = \sum_{\nu < \lambda} G^{(\nu)}$

and take $\{G^{(\nu)}; G \text{ open in } R\}$ as a basis of open sets of $R^{(\lambda)}$. Then it is easily seen that the conditions (1), (2), (3), (5) are satisfied for $\nu = \lambda$. Let $x \in R^{(\lambda)} - R$, and $x \in G^{(\lambda)}$. Then there exists an ordinal ν such that $x \in R^{(\nu)} - R$ and $\nu < \lambda$. By (6) there exists $\alpha \in \Omega$ such that $S(x, \mathbb{U}_x^{(\nu)}) \subset G^{(\nu)}$, and hence we have $S(x, \mathbb{U}_x^{(\lambda)}) \subset G^{(\lambda)}$. This shows that the condition (6) holds for $\nu = \lambda$. Next let x be a point of $R^{(\lambda)} - R$ and $y \in \overline{x}$. Then there exists some ordinal ν such that $x, y \in R^{(\nu)}$ and $\nu < \lambda$. Hence we have $y \in \overline{x}$ in the space $R^{(\nu)}$, and consequently we have y = x. Therefore the condition (4) is valid also for $\nu = \lambda$.

Thus for any ordinal ν we can define $R^{(\nu)}$ which possesses the properties (1)-(6). Now we have

$$x = [\prod_{\alpha} S(x, \mathfrak{U}_{\alpha}^{(\nu)})] \cdot (R^{(\nu)} - R)$$

for any point x of $R^{(\nu)} - R$, by virtue of (4) and (6). Hence for any point x of $R^{(\nu)} - R$ there corresponds a subfamily $\{U; U \in \mathbb{U}_{\alpha}, x \in U^{(\nu)}\}$ of \mathbb{U} with the finite intersection property, where $\mathbb{U} = \{U; U \in \mathbb{U}_{\alpha}, \alpha \in \Omega\}$. Therefore, if we denote by m the cardinal number of the set \mathbb{U} , it is seen that the cardinal number of $R^{(\nu)} - R$ cannot exceed 2^{m} . Hence for some λ with $|\lambda| \leq 2^{\mathrm{m}}$ the space $R^{(\lambda)}$ must be complete with respect to $\{\mathbb{U}_{\alpha}^{(\lambda)}; \alpha \in \Omega\}$. We denote this $R^{(\lambda)}$ by \tilde{R} . Here we can easily prove (cf. I, Lemma 1)

Lemma 2. For an open set G of R we have $G^{(\lambda)} = R - \overline{R} - \overline{G}$, where the bar indicates the closure operation in $\widetilde{R} = R^{(\lambda)}$.

Therefore we have established the following theorem.

Theorem 1. Let R be a space with a uniformity $\{\mathfrak{U}_{\alpha}; \alpha \in \Omega\}$ Then there exists a space S with the following properties:

- 1) S contains R as a subspace.
- 2) $\{S \overline{R G}; G \text{ open in } R\}$ is a basis of open sets of S.
- 3) Each point of S-R is closed.
- 4) $\mathfrak{V}_{\alpha} = \{S \overline{R U}; U \in \mathfrak{U}_{\alpha}\}$ is an open covering of S.
- 5) { $S(x, \mathfrak{V}_{\alpha}); \alpha \in \Omega$ } is a basis of neighbourhoods of each point x of S-R.

6) S is complete with respect to the uniformity $\{\mathfrak{V}_{\alpha}; \alpha \in \Omega\}$. Here the bar indicates the closure operation in S.

Theorem 2. Any space S, which has the properties 1)-6) and is minimal with regard to these properties, is mapped on \tilde{R} by a homeomorphism which leaves each point of R invariant. K. MORITA.

Proof. Let us put f(x) = x for every point x of R. For a point x of $R^{(1)}-R$ there exists a vanishing Cauchy family $\{X_{\lambda}\}$ in R which belongs to the class x. Then $\{X_{\lambda}\}$ is also a Cauchy family with respect to $\{\mathfrak{B}_{\alpha}\}$. Hence $\Pi \overline{X}_{\lambda}$ is a point of S-R. We put $f^{(1)}(x) = \Pi \overline{X}_{\lambda}$ and $f^{(1)}_{(x)} = f(x)$ for $x \in R$. Then we see easily, as in II, §1, that $f^{(1)}$ maps $R^{(1)}$ onto a subspace of S topologically. By transfinite induction we can construct a homeomorphism $f^{(\lambda)}$ of $R^{(\lambda)}$ into S which is an extension of f. According to the minimal property of S we have $f^{(\lambda)}(\widetilde{R}) = f^{(\lambda)}(R^{(\lambda)})' = S$.

We call \tilde{R} the completion of R with respect to the uniformity $\{\mathfrak{ll}_{s}\}$.

Example. We shall give here a metrizable space with a uniformity agreeing with the topology whose simple extension is not complete.³⁾ Let

$$R = \{(x, y); 0 \le x \le 1, 0 < y \le 1\}$$

be a subspace of Euclidean plane, and let us put

$$\mathfrak{U}_m = \{ V_m(p); p \in R \} + \{ W_{mj}; j = 1, 2, \ldots, m+1 \},\$$

where $V_m(p) = \{(\xi, \eta); |\xi - x| < \frac{1}{2^m}, |\eta - y| < \frac{1}{2^m}y\} \cdot R$ with

p = (x, y) and

$$W_{mi} = \left\{ (x, y); \ \frac{1}{2^{i}} < x < \frac{1}{2^{i-1}}, \ 0 < y < \frac{1}{2^{m}} \right\}, \ i = 1, 2, ..., m,$$
$$W_{m, m+1} = \left\{ (x, y); \ 0 < x < \frac{1}{2^{m}}, \ 0 < y < \frac{1}{2^{m}} \right\}.$$

Then $\{\mathfrak{U}_m; m = 1, 2, ...\}$ is a *T*-uniformity of *R* which agrees with the topology. If we put

$$X_n^{(i)} = \left\{ \left(\frac{1}{2^i} + \frac{1}{2^{i+1}}, \frac{1}{2^k} \right); \ k = n, \ n+1, \ldots \right\},\$$

 $\{X_n^{(i)}; n = 1, 2,\}$ is a vanishing Cauchy family and determines a point of R^* which will be denoted by ζ_i . It is easily shown that

$$R^* = R + \sum_{i=1}^{\infty} \zeta_i ; \qquad V_m^*(p) = V_m(p) ,$$

$$W_{mi}^* = W_{mi} + \zeta_i , \ i = 1, 2, \dots, m ; \qquad W_{m, m+1}^* = W_{m, m+1} + \sum_{i=m+1}^{\infty} \zeta_i .$$

In R^* , $\{\sum_{i=n}^{\infty} \zeta_i; n = 1, 2, ...\}$ is a vanishing Cauchy family with respect to $\{\mathfrak{U}_m^*\}$. Hence R^* is not complete.

 \S 2. Regular uniformity. From Theorem 3 in II we easily obtain the following theorem.

³⁾ Cf. the example at the end of I.

No. 4.]

Theorem 3. Any uniformly continuous mapping f of a space S with uniformity $\{\mathfrak{B}_{\lambda}\}$ into a T_1 -space R with a regular uniformity $\{\mathfrak{U}_{\alpha}\}$ agreeing with the topology can be extended to a uniformly continuous mapping F of \tilde{S} into \tilde{R} , where \tilde{S} and \tilde{R} are the completions of S and R respectively.

Theorem 4. Let f be a continuous mapping of a subspace X of a T-space S into a T_1 -space R, and let $\{\mathfrak{U}_{\alpha}; \alpha \in \Omega\}$ be a regular T-uniformity of R agreeing with the topology. Then f can be extended to a continuous mapping of X_0 into R^* , where $X \subset X_0 \subset S$, $X_0 =$ $\prod_{\alpha \in \Omega} H_{\alpha} \cdot \overline{X}$ with some open sets H_{α} of S, and R^* means the simple extension of R with respect to $\{\mathfrak{U}_{\alpha}\}$.

Proof. Without loss of generality we may assume that $\overline{X} = S$. For an open set G of X we put $\tau(G) = S - \overline{X - G}$. If we put further

(7)
$$X_0 = \prod_{\alpha \in \Omega} H_{\alpha}$$
, $H_{\alpha} = \sum_{U \in I_{\alpha}} \tau [f^{-1}(U)]$,

then H_{α} are open sets of S and we have $X \subset X_0$. Let x be a point of X_0 . Then a family $\{U_{\alpha} ; \alpha \in \Omega\}$ such that $x \in \tau [f^{-1}(U_{\alpha})], U_{\alpha} \in \mathbb{U}_{\alpha}$ is a Cauchy family in R with respect to $\{\mathbb{U}_{\alpha}\}$, according to I, Lemma 16.4 Another family $\{V_{\alpha} ; \alpha \in \Omega\}$ such that $x \in \tau [f^{-1}(V_{\alpha})],$ $V_{\alpha} \in \mathbb{U}_{\alpha}$ is equivalent to the above $\{U_{\alpha} ; \alpha \in \Omega\}$, since for any α and U_{β} we have $V_{\alpha} \subset S(U_{\beta}, \mathbb{U}_{\alpha})$ (cf. I, Lemma 17). Hence if we put

(8) $f_0(x) = \prod_{\alpha \in \Omega} \overline{U}_{\alpha}$ in R^* ,

 f_0 defines a one-valued mapping of X_0 into R^* . f_0 clearly coincides with f for the points of X. If two points x, y of X_0 belong to some $\tau [f^{-1}(U_{\lambda(\alpha)})]$ with $U_{\lambda(\alpha)} \in \mathfrak{U}_{\lambda(\alpha)}$, then $f_0(x)$ and $f_0(y)$ belong to $R^* - \overline{R - U_{\alpha}}$, where $\mathfrak{U}_{\lambda(\alpha)}$ is a covering with the property mentioned in the condition (C) of I, §1 and $S(U_{\lambda(\alpha)}, \mathfrak{U}_{\delta}) \subset U_{\alpha}$, $U_{\alpha} \in \mathfrak{U}_{\alpha}$. Therefore f_0 is continuous.

Corollary. A continuous mapping of a subspace X of T-space S into a complete metric space K, can be extended to a continuous mapping of a G_{δ} -set $X_0 > X$ into R, where X is assumed to be dense in S.

Remark. It is well known that the famous theorem of Lavrentieff follows from this corollary.

Now let $\{\mathfrak{U}_{\alpha}; \alpha \in \mathcal{Q}\}$ be a regular *T*-uniformity of a T_1 -space R agreeing with the topology. If we put S = w(R) (Wallman's bicompactification) and f(x) = x for $x \in R$, and apply Theorem 4 to this case, we see that f can be extended to a continuous mapping φ of H into R^* , where

(9)
$$H = \prod_{\alpha \in \Omega} H_{\alpha}$$
, $H_{\alpha} = \sum_{U \in \mathfrak{ll}_{\alpha}} \tau(U)$, $\tau(U) = w(R) - \overline{R - U}$,

⁴⁾ For open sets H, K of X, $H \cdot K = 0$ if and only if $\tau(H) \cdot \tau(K) = 0$ since S is a T-space and $\overline{X} = S$.

K. MORITA.

[Vol. 27,

the bar indicating the closure operation in w(R). Then φ maps H on the whole of R^* ; because for a Cauchy family $\{X_{\lambda}\}$ we have $\prod \overline{X}_{\lambda} \neq 0$ in w(R) and $S(X_{\lambda}, \mathfrak{U}_{\tau}) \subset U_{\alpha}$ with $U_{\alpha} \in \mathfrak{U}_{\alpha}$ implies $\overline{X}_{\lambda} \subset \tau(U_{\alpha})$ and hence we have $\prod \overline{X}_{\lambda} \subset H$ and consequently $\{X_{\lambda}\}$ converges to $\varphi(x)$ in R^* for any point $x \in \prod \overline{X}_{\lambda}$. As is shown above, $y \in S(x, \tau(\mathfrak{U}_{\lambda(\alpha)}))$ implies $\varphi(y) \in S(\varphi(x), \mathfrak{U}_{\alpha}^*)$, where

(10) $\tau(\mathfrak{U}_{\mathfrak{a}}) = \{\tau(U); U \in \mathfrak{U}_{\mathfrak{a}}\}.$

Let $\varphi(x) = \varphi(y)$ and $x \in \tau(U_{\alpha})$, $y \in \tau(V_{\alpha})$ with U_{α} , $V_{\alpha} \in \mathfrak{U}_{\alpha}$. Then the Cauchy family $\{U_{\alpha}; \alpha \in \mathcal{Q}\}$ is equivalent to $\{V_{\alpha}; \alpha \in \mathcal{Q}\}$. Therefore for any α there exist U_{β} , V_{τ} such that $U_{\beta} + V_{\tau} \subset W_{\alpha}$ for some $W_{\alpha} \in \mathfrak{U}_{\alpha}$, and so we have $\tau(U_{\beta}) + \tau(V_{\tau}) \subset \tau(W_{\alpha})$ that is, $y \in S(x, \tau(\mathfrak{U}_{\alpha}))$. Thus we have

Theorem 5. Let R be a T_1 -space with a regular T-uniformity $\{\mathfrak{U}_{\alpha}; \alpha \in \Omega\}$ agreeing with the topology. Then there exists a continuous mapping φ of a subspace H of w(R) onto the completion R^* of R with respect to $\{\mathfrak{U}_{\alpha}\}$ with the following properties:

- 1) $y \in S(x, \tau(\mathfrak{U}_{\alpha}))$ for every $\alpha \in \Omega$ if and only if $\varphi(x) = \varphi(y)$.
- 2) $\varphi(H-R) = R^* R; \varphi(x) = x \text{ for } x \in R.$

Since Cech's bicompactification $\beta(R)$ can be defined as the completion of R with respect to a uniformity consisting of all finite normal coverings, we obtain the following known theorem from Theorem 5.

Theorem 6. Let R be a completely regular T_1 -space. Then there exists a continuous mapping φ of w(R) into $\beta(R)$ such that $\varphi(x) = x$ for $x \in R$ and $\varphi(w(R)-R) = \beta(R)-R$.

Theorem 7. Let $\{\mathfrak{U}_{\alpha}\}$ be a regular T-uniformity of a T_i -space R which agrees with the topology. A necessary and sufficient condition for R to be complete with respect to $\{\mathfrak{U}_{\alpha}\}$ is that $R = \Pi H_{\alpha}$ in w(R), where H_{α} are defined by (9).

Proof is obvious by Theorem 5.

Theorem 8. In case $\{\mathfrak{U}_{\alpha}\}$ is a completely regular T-uniformity, we can replace w(R) in Theorem 5 or 6 by $\beta(R)$.

Proof. We have only to prove that $S(X_{\lambda}, \mathfrak{U}_{\tau}) \subset U_{\alpha}$ implies $\overline{X}_{\lambda} \subset \tau(U_{\alpha})$ in $\beta(R)$ (cf. the proof of Theorem 5), but this follows immediately from the fact that $\{U_{\alpha}, R - \overline{X}_{\lambda}\}$ is a normal covering of R.

Remark 1. In Theorems 5-8 it is sufficient to assume that R is a T-space.

Remark 2. As an application of Theorems 7 and 8 we can prove a theorem of E. Čech that a metrizable space R is complete with respect to some metric if and only if R is a G_{δ} -set in $\beta(R)$. No. 4.]

The "only if" part is obvious from Theorems 7 and 8. Let $\{\mathfrak{V}_m; m = 1, 2, \ldots\}$ be a completely regular *T*-uniformity of *R* agreeing with its topology and $R = \prod_{n=1}^{\infty} G_n$ with open sets G_n of $\beta(R)$. By the full normality of *R* we can easily construct a completely regular *T*-uniformity $\{\mathfrak{U}_n\}$ such that \mathfrak{U}_n is a refinement of \mathfrak{V}_n and $\sum_{U \in \mathfrak{U}_n} \tau(U) \subset G_n$. Then *R* is complete with respect to $\{\mathfrak{U}_n\}$ by Theorems 7 and 8.⁵

⁵⁾ For a detailed proof cf. K. Morita, On the topological completeness, Shijo Sugaku Danwa-kai, 2nd ser., **13**, Jan. 1949. Cf. also J. Nagata, On topological completeness, Jour. Math. Soc. Japan, **2** (1950), p. 44.