4. A Lattice-Theoretic Treatment of Measures and Integrals.

By Shizu ENOMOTO.

(Comm. by K. KUNUGI, M.J.A., Jan. 12, 1952.)

In this paper we shall introduce a system of mathematical objects which is considered as a generalization of a set of Somen introduced by C. Carathéodory in his article [2], and which contains as particular cases a system of subsets of a set and a system of non-negative functions defined on a set. We shall give further the results corresponding to the theory of the Carathéodory's outer measure ¹⁾ and the extension theorem of Kolomogoroff-Hopf.²⁾

1. In this section we shall deal with a mathematical object \mathfrak{M} satisfying the following axioms.

Axiom 1. For every $A, B \in \mathfrak{M}$, one of the incompatible formulas A=B or $A \neq B$ is accepted and "=" satisfies the following conditions:

(1.1) A=A; (1.2) If A=B, then B=A; (1.3) If A=B and B=C, then A=C.

Axiom 2. For every $A, B \in \mathfrak{M}$, there exists only one element of \mathfrak{M} denoted by $A \downarrow B$, satisfying the following conditions:

(2.1) $A \ddagger A = A$; (2.2) $A \ddagger B = B \ddagger A$; (2.3) $A \ddagger (B \ddagger C) = (A \ddagger B) \ddagger C$; (2.4) If B = B', then $AB \ddagger = A \ddagger B'$.

 $A \neq B$ will be called the sum of A and B.

Definition 1. If $A \stackrel{.}{+} B = A$, then B is said to be a part of A and denoted by $A \supseteq B$ or $B \subseteq A$.

Then \mathfrak{M} may be regarded as an ordered system through the relation $A \supseteq B$ which we can replace by $A \ge B$ and in this case Definition 1 should be taken as the definition of the enouncement "B is smaller than A" or "A is greater than B".

Axiom 3. For $\{A_n\}$, $A_n \in \mathfrak{M}^{30}$, there exists the smallest element $V \in \mathfrak{M}$, of which every A_n is a part, and it will be written $V=A_1 \downarrow A_2 \downarrow \ldots$ or $V=\sum_{n=1}^{\infty}A_n$. V will be called the sum of $\{A_n\}$.

Axiom 4. There exists an element of \mathfrak{M} which is a part of every element of \mathfrak{M} and is called a *null element*.

Definition 2. For $A, B \in \mathbb{M}$, if A and B has no common part except the null element, then we say that A and B are disjunct and write $A \circ B$ or $B \circ A$.

¹⁾ Cf. [1].

²⁾ Cf. [1].

³⁾ A_n denotes A_n (n=1, 2,...).

No. 1.] A Lattice-Theoretic Treatment of Measures and Integrals.

Axiom 5. For B, $A_n \in \mathfrak{M}$, if B and A_n are disjunct for all n, then B and $\sum_{n=1}^{\infty} A_n$ are also disjunct.

Axiom 6. There exists a system \mathfrak{N} of mathematical object related to \mathfrak{M} satisfying the following conditions: (6.1) \mathfrak{N} contains \mathfrak{M} as a sub-system and satisfies Axioms 1, 2, 3, 4, and Axiom 5 either for $B \in \mathfrak{M}$, $A_n \in \mathfrak{N}$ or for $A_n \in \mathfrak{M}$, $B \in \mathfrak{N}$ and a null element of \mathfrak{N} also belongs to \mathfrak{M} ; (6.2) If $A, B \in \mathfrak{M} \subseteq \mathfrak{N}$, then the sum of them defined in \mathfrak{N} has the same sense as in \mathfrak{M} ; (6.3) For $A \in \mathfrak{M}$ and $B \in \mathfrak{N}$, there exist uniquely $B_1, B_2 \in \mathfrak{N}$ such that $B_1 \neq B_2 = B$, $B_1 \circ A$ and B_2 $\subseteq A$ and that $B \in \mathfrak{M}$ implies $B_2 \in \mathfrak{M}$.

We call the elements B_1 , B_2 the components of B decomposed by A.

There is exactly one common null element of \mathfrak{M} and \mathfrak{N} , and each of them has no other null element.

Definition 3. If a system \mathfrak{M} of mathematical objects satisfies Axioms 1, 2, 3, 4, 5, 6, then \mathfrak{M} is said a set of Somen and an element of \mathfrak{M} is said Soma.

In particular, if $\mathfrak{M} = \mathfrak{N}$, then \mathfrak{M} coincides with a set of Somen defined by C. Carathéodory in [2]. In the sequel we shall denote sets of Somen by \mathfrak{M} , \mathfrak{M}_1 , \mathfrak{M}_m etc.

Lemma 1. 1) If A, $B \in \mathfrak{N}$, $A \subseteq B$ and $B \subseteq A$, then A=B. 2) For A, B, $C \in \mathfrak{N}$, $A \downarrow B \subseteq C$ if and only if $A \subseteq C$ and $B \subseteq C$. 3) If A, $B \in \mathfrak{N}$, $A \subseteq B$ and $A \circ B$, then A=0. 4) If A, B, $C \in \mathfrak{N}$. $A \subseteq B$ and $B \circ C$, then $A \circ C$. 5) If $A_{kj} \in \mathfrak{N}$ (k, j=1, 2,...), then the sum of $\{A_{kj}\} = \sum_{k=1}^{\infty} (\sum_{j=1}^{\infty} A_{kj}) = \sum_{j=1}^{\infty} (\sum_{k=1}^{\infty} A_{kj})$.

Theorem 1. Let $A \in \mathfrak{M}$, $B \in \mathfrak{N}$ and the elements B_1 , B_2 be the components of B decomposed by A such that $B_1 \circ A$ and $B_2 \subseteq A$, then it hold:

1) B_1 is the greatest part of B which is disjunct from A; 2) B_1 is the greatest part of B which is disjunct from B_2 ; 3) B_2 is the greatest common part of A and B; 4) B_2 is the greatest part of B which is disjunct from B_1 .

Definition 4. For A, $B \in \mathfrak{N}$ if $A \circ B$, then we denote by A+B the sum of A and B.

Definition 5. Let $A \in \mathfrak{M}$, $B \in \mathfrak{N}$ and the elements B_1 , B_2 be the components of B decomposed by A such that $B_1 \circ A$ and $B_2 \subseteq A$, then we shall denote B_1 and B_2 by B-BA and BA respectively.

Theorem 2. 1) If $A \in \mathfrak{M}$ and $B \in \mathfrak{N}$, then B = BA + (B - BA). 2) If $A, B \in \mathfrak{M}$, then AB = BA. 3) If $A, B \in \mathfrak{M}$ and $C \in \mathfrak{N}$, then (CB)A = (CA)B = C(AB). If $A, B, C \in \mathfrak{M}$, then A(BC) = (AB)C = B(AC) $(=ABC)^{4}$. 4) If $A, B \in \mathfrak{M}$, then $A \ddagger B = AB + (A - AB) + (B - BA)$.

Theorem 3. Let it be $A_n \in \mathfrak{N}$, $B \in \mathfrak{M}$ and $V = \sum_{n=1}^{\infty} A_n$. Then we have $VB = \sum_{n=1}^{\infty} (A_n B)$ and $V - VB = \sum_{n=1}^{\infty} (A_n - A_n B)$.

⁴⁾ If we write ABC, we have no confusion.

S. ENOMOTO.

Theorem 4. For A, B, $C \in \mathfrak{M}$, it holds:

$$(A-AB) C = (C-CB) A = AC - (AC) B.$$

Theorem 5. Let it be E, F, A, $A_n \in \mathfrak{M}$, then it hold :

1) (E-EF) $(\sum_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} ((E-EF) A_n);$

2) $(E-EF)-(E-EF)A=E-E(A \ddagger F)=(E-EA)-(E-EA)F$. Definition 6. Let \mathfrak{M}^* be the system which consists of the elements of \mathfrak{M} and those of the form A-AB for all $A, B \in \mathfrak{M}$.

We notice that we have UA, $U-UA \in \mathfrak{M}^*$ for any $U \in \mathfrak{M}^*$, $A \in \mathfrak{M}$.

Definition 7. Let \mathfrak{M} and \mathfrak{M}_1 be two sets of Somen and α be a mapping of \mathfrak{M}^* onto \mathfrak{M}_1^* , which is one to one onto \mathfrak{M}_1 when its domain is restricted to \mathfrak{M} . Suppose furthermore α satisfies the relations:

i) $a(A) = a(AB) \ddagger a(A - AB)$ for all $A, B \in \mathfrak{M}$;

ii) $\alpha(A-AB) \circ \alpha(B)$ for all $A, B \in \mathfrak{M}$.

Then, we say that a is an isomorphic mapping of \mathfrak{M} onto \mathfrak{M}_1 , and in the particular case $\mathfrak{M}_1=\mathfrak{M}$ we say that a is an automorphic mapping of \mathfrak{M} .

Theorem 6. Let α be an isomorphic mapping of \mathfrak{M} onto \mathfrak{M}_1 , then α is one to one onto \mathfrak{M}_1^* and for $A, B, A_n \in \mathfrak{M}$ it hold:

1) $a(AB) = a(A) a(B); 2) a(A-AB) = a(A)-a(A) a(B); 3) a(A + B) = a(A) + a(B); 4) a(\sum_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} a(A_n); 5) A \subseteq B$ holds if and only if $a(A) \subseteq a(B); 6) a((A-AB)A_1) = a(A-AB) a(A_1), a((A-AB) - (A-AB)A_1) = a(A-AB) a(A_1).$

2. Definition 8. Let μ be a functional defined on \mathfrak{M}^* satisfying the following conditions:

i) $0 \leq \mu(A) \leq +\infty$ for all $A \in \mathfrak{M}^*$; ii) If $A \subseteq B$ and $A, B \in \mathfrak{M}^*$, then $\mu(A) \leq \mu(B)$; iii) If $V \in \mathfrak{M}^*$, $A_n \in \mathfrak{M}$, $A_n \subseteq A_{n+1}$ and $V = \sum_{n=1}^{\infty} A_n$, then $\mu(UV) \leq \mu(UA_1) + \sum_{n=1}^{\infty} \mu(UA_{n+1} - UA_{n+1}A_n) + \mu(U - UV)$. Then, we call μ an outer measure defined on \mathfrak{M} .

Definition 9. If $A \in \mathfrak{M}$ is an element such that

 $\mu(U) = \mu(UA) + \mu(U - UA) \quad \text{for all } U \in \mathfrak{M}^*,$

then A is said to be μ -measurable. By $\mathfrak{B}(\mu)$ we shall denote the family of all μ -measurable sets.

In order to show the measurablity of $A \in \mathfrak{M}$, it suffices to show that $\mu(E-EF) = \mu((E-EF)A) + \mu((E-EF)-(E-EF)A)$ for any $E, F \in \mathfrak{M}$ satisfying $\mu(E-EF) < +\infty$.

Theorem 7. $\mathfrak{B}(\mu)$ has the following properties :⁵⁾

1) If A, $B \in \mathfrak{B}(\mu)$, then $A \ddagger B \in \mathfrak{B}(\mu)$; 2) If A, $B \in \mathfrak{B}(\mu)$, then $AB \in \mathfrak{B}(\mu)$; 3) If A, $B \in \mathfrak{B}(\mu)$ and $A - AB \in \mathfrak{M}$, then $A - AB \in \mathfrak{B}(\mu)$;

⁵⁾ Cf. [2].

4) If $A, B \in \mathfrak{B}(\mu)$ and $A \circ B$, then $\mu(A+B) = \mu(A) + \mu(B)$; 5) If $A_n \in \mathfrak{B}(\mu)$ and $A_n \subseteq A_{n+1}$, then $V = \sum_{n=1}^{\infty} A_n \in \mathfrak{B}(\mu)$ and $\lim_{n \to \infty} \mu(A_n) = \mu(V)$.

Theorem 8. Let α be an isomorphic mapping of \mathfrak{M} onto \mathfrak{M}_1 and μ and μ_1 be outer measures in \mathfrak{M} and \mathfrak{M}_1 respectively. If it hold:

$$\mu_1(\alpha(A)) = k(\mu(A)) \qquad (k \ge 0) \qquad \text{for all } A \in \mathfrak{M}^*,$$

then μ -measurablity of A implies μ_1 -measurablity of $\alpha(A)$.

3. Definition 10. Let \mathfrak{B} be a sub-system of \mathfrak{M} satisfying the following conditions :

i) If A and B belong to \mathfrak{R} , then so do $A \stackrel{\cdot}{+} B$ and AB; ii) If A_n belongs to \mathfrak{B} and $A_n \subseteq A_{n+1}$ for all n, then $\sum_{n=1}^{\infty} A_n \in \mathfrak{B}$. Then, \mathfrak{B} is called *Baire set*. We denote by $\mathfrak{B}(\mathfrak{S})$ the smallest Baire set containing a sub-system \mathfrak{S} of \mathfrak{M} .

Theorem 9. Let \mathfrak{S} be a sub-system of \mathfrak{M} satisfying the following conditions :

1) If A and B belong to \mathfrak{S} , then so do $A \ddagger B$ and AB; 2) A functional m is defined on \mathfrak{S}^* , which consists of \mathfrak{S} and those of the form A-AB for all A, $B \in \mathfrak{S}$, and satisfies that $0 \leq m(A) < +\infty$ for all $A \in \mathfrak{S}^*$ and that m(U) = m(UB) + m(U-UB) for all $U \in \mathfrak{S}^*$ and $B \in \mathfrak{S}$; 3) Let it be $U_n \in \mathfrak{S}^*$, $U_n \subseteq U_{n+1}$ and $A = \sum_{n=1}^{\infty} U_n \in \mathfrak{S}$, then $m(A) \leq \lim_{n \to \infty} m(U_n)$.

Then, there exists a functional $\mu(A)$ defined on $\mathfrak{V}(\mathfrak{E})$ having the following properties :

1') $0 \leq \mu(A) < +\infty$ for all $A \in \mathfrak{V}(\mathfrak{S})$; 2') If $A, B \in \mathfrak{V}(\mathfrak{S})$ are disjunct, then $\mu(A+B) = \mu(A) + \mu(B)$; 3') If $A \in \mathfrak{S}$, then $\mu(A) = m(A)$; 4') If $A_n \in \mathfrak{V}(\mu)$ and $A_n \subseteq A_{n+1}$, then $\lim_{n \to \infty} \mu(A_n) = \mu(\sum_{n=1}^{\infty} A_n)$.

Corollary 1. Let it be \mathfrak{C} and m as in Theorem 9. Besides, if $\mathfrak{M}^* = \mathfrak{M}$ then there exists a functional μ defined on the smallest Baire set $\mathfrak{V}_c(\mathfrak{S})$ such that $A - AB \in \mathfrak{V}_c(\mathfrak{S})$ for all $A, B \in \mathfrak{V}_c(\mathfrak{S})$ and that $\mathfrak{V}_c(\mathfrak{S}) \supseteq \mathfrak{C}$, and satisfying 1'), 2'), 3'), 4') in Theorem 9 for $\mathfrak{V}_c(\mathfrak{S})$ in stead of $\mathfrak{V}(\mathfrak{S}).^{\mathfrak{S}}$

Theorem 10. Let it be \mathfrak{S} and m as in Theorem 9 and a be an automorphic mapping of \mathfrak{M} . If a is a mapping of \mathfrak{S} onto itself and if $m(\alpha(A)) = k(m(A))$ $(k \ge 0)$ for all $A \in \mathfrak{S}$. Then, α is also a mapping of $\mathfrak{B}(\mathfrak{S})$ onto itself and $\mu(\alpha(A)) = k(m(A))$ for all $A \in \mathfrak{S}(\mathfrak{S})$.

Applications of the above theory to a system of subsets of a set and to a system of non-negative functions defined on a set will be given in another article.⁷

⁶⁾ Cf. [3].

⁷⁾ Cf. [4], [5], [6], [7], [8].

S. ENOMOTO.

References.

 C. Carathéodory: Vorlesungen über reelle Funktion (1927).
C. Carathéodory: Entwurf für eine Algebraisierung des Integralbegriffs. Sitzungsb. der Bay. Akad. Wiss. zu München, (1938), 27-68.

3) E. Hopf: Ergodenthéorie (1937).

4) J. von Neumann: Functional operators (1950).

5) P.J. Daniell: A general form of integral. Ann. of Math., 19 (1917), 279-294.

6) S. Banach: The Lebesgue integral in abstract spaces (S. Saks: Theory of the integral, 320-330) (1937).

7) M.H. Stone: Note on integration I. Proc. Nat., Acad. Sci. U.S.A., 34(1948), 336-343.

8) Y. Kawada: A note on integration. Sci. Pap. of Coll. of Gen. Edu. Univ. of Tokyo, Vol. 1, No. 1 (1951).