4. A Lattice-Theoretic Treatment of Measures and Integrals.

By Shizu Enomoto.
(Comm. by K. Kunugi, m.J.A., Jan. 12, 1952.)

In this paper we shall introduce a system of mathematical objects which is considered as a generalization of a set of Somen introduced by C. Carathéodory in his article [2], and which contains as particular cases a system of subsets of a set and a system of non-negative functions defined on a set. We shall give further the results corresponding to the theory of the Carathéodory's outer measure ${ }^{1)}$ and the extension theorem of Kolomogoroff-Hopf. ${ }^{2)}$

1. In this section we shall deal with a mathematical object \mathfrak{M} satisfying the following axioms.

Axiom 1. For every $A, B \in \mathfrak{M}$, one of the incompatible formulas $A=B$ or $A \neq B$ is accepted and " $=$ " satisfies the following conditions:
(1.1) $A=A$; (1.2) If $A=B$, then $B=A$; (1.3) If $A=B$ and $B=$ C, then $A=C$.

Axiom 2. For every $A, B \in \mathfrak{M}$, there exists only one element of \mathfrak{M} denoted by $A \dot{+} B$, satisfying the following conditions:
(2.1) $A \dot{+} A=A$; (2.2) $A \dot{+} B=B \dot{+} A$; (2.3) $A \dot{+}(B \dot{+} C)=(A \dot{+} B) \dot{+} C ;$ (2.4) If $B=B^{\prime}$, then $A B \dot{+}=A \dot{+} B^{\prime}$.
$A \dot{+} B$ will be called the sum of A and B.
Definition 1. If $A \dot{+} B=A$, then B is said to be a part of A and denoted by $A \supseteq B$ or $B \subseteq A$.

Then \mathfrak{M} may be regarded as an ordered system through the relation $A \supseteq B$ which we can replace by $A \geqq B$ and in this case Definition 1 should be taken as the definition of the enouncement " B is smaller than A " or " A is greater than B '.

Axiom 3. For $\left\{A_{n}\right\}, A_{n} \in \mathfrak{M}^{3)}$, there exists the smallest element $V \in \mathfrak{M}$, of which every A_{n} is a part, and it will be written $V=A_{1} \dot{+} A_{2} \dot{+} \ldots$ or $V=\sum_{n=1}^{\sim} A_{n}$ 。 V will be called the sum of $\left\{A_{n}\right\}$.

Axiom 4. There exists an element of \mathfrak{M} which is a part of every element of \mathfrak{M} and is called a null element.

Definition 2. For $A, B \in \mathfrak{M}$, if A and B has no common part except the null element, then we say that A and B are disjunct and write $A \circ B$ or $B \circ A$.

1) Cf. [1].
2) Cf. [1].
3) A_{n} denotes $A_{n}(n=1,2, \ldots)$.

Axiom 5. For $B, A_{n} \in \mathfrak{M}$, if B and A_{n} are disjunct for all n, then B and $\sum_{n=1}^{\infty} A_{n}$ are also disjunct.

Axiom 6. There exists a system \mathfrak{N} of mathematical object related to \mathfrak{M} satisfying the following conditions: (6.1) \mathfrak{R} contains \mathfrak{M} as a sub-system and satisfies Axioms 1, 2, 3, 4, and Axiom 5 either for $B \in \mathfrak{M}, A_{n} \in \mathfrak{M}$ or for $A_{n} \in \mathfrak{M}, B \in \mathfrak{N}$ and a null element of \mathfrak{M} also belongs to \mathfrak{M}; (6.2) If $A, B \in \mathfrak{M} \subseteq \mathfrak{R}$, then the sum of them defined in $\mathfrak{\Re}$ has the same sense as in \mathfrak{M}; (6.3) For $A \in \mathfrak{M}$ and $B \in \mathfrak{R}$, there exist uniquely $B_{1}, B_{2} \in \mathfrak{N}$ such that $B_{1} \dot{+} B_{2}=B, \quad B_{1} \circ A$ and B_{2} $\subseteq A$ and that $B \in \mathfrak{M}$ implies $B_{2} \in \mathfrak{M}$.

We call the elements B_{1}, B_{2} the components of B decomposed by A.
There is exactly one common null element of \mathfrak{M} and \mathfrak{R}, and each of them has no other null element.

Definition 3. If a system \mathfrak{M} of mathematical objects satisfies Axioms 1, 2, 3, 4, 5, 6, then \mathfrak{M} is said a set of Somen and an element of \mathfrak{M} is said Soma.

In particular, if $\mathfrak{M}=\mathfrak{R}$, then \mathfrak{M} coincides with a set of Somen defined by C. Carathéodory in [2]. In the sequel we shall denote sets of Somen by \mathfrak{M}, $\mathfrak{M}_{1}, \mathfrak{M}_{m}$ etc.

Lemma 1. 1) If $A, B \in \mathfrak{R}, A \subseteq B$ and $B \subseteq A$, then $A=B$.
2) For $A, B, C \in \mathfrak{N}, A \dot{+} B \subseteq C$ if and only if $A \subseteq C$ and $B \subseteq C$. 3) If $A, B \in \mathfrak{R}, A \subseteq B$ and $A \circ B$, then $A=0$. 4) If $A, B, C \in \mathfrak{\Re}$. $A \subseteq B$ and $B \circ C$, then $A \circ C$. 5) If $A_{k j} \in \Re(k, j=1,2, \ldots)$, then the sum of $\left\{A_{k j}\right\}=\sum_{k=1}^{\infty}\left(\sum_{j=1}^{\infty} A_{k j}\right)=\sum_{j=1}^{\infty}\left(\sum_{k=1}^{\infty} A_{k j}\right)$.

Theorem 1. Let $A \in \mathfrak{M}, B \in \mathfrak{N}$ and the elements B_{1}, B_{2} be the components of B decomposed by A such that $B_{1} \circ A$ and $B_{2} \subseteq A$, then it hold:

1) B_{1} is the greatest part of B which is disjunct from A; 2) B_{1} is the greatest part of B which is disjunct from $\left.B_{2} ; 3\right) B_{2}$ is the greatest common part of A and B; 4) B_{2} is the greatest part of B which is disjunct from B_{1}.

Definition 4. For $A, B \in \mathfrak{R}$ if $A \circ B$, then we denote by $A+B$ the sum of A and B.

Definition 5. Let $A \in \mathfrak{M}, B \in \mathfrak{M}$ and the elements B_{1}, B_{2} be the components of B decomposed by A such that $B_{1} \circ A$ and $B_{2} \subseteq A$, then we shall denote B_{1} and B_{2} by $B-B A$ and $B A$ respectively.

Theorem 2. 1) If $A \in \mathfrak{M}$ and $B \in \mathfrak{R}$, then $B=B A+(B-B A)$. 2) If $A, B \in \mathfrak{M}$, then $A B=B A$. 3) If $A, B \in \mathfrak{M}$ and $C \in \mathfrak{M}$, then $(C B) A$ $=(C A) B=C(A B)$. If $A, B, C \in \mathfrak{M}$, then $A(B C)=(A B) C=B(A C)$ $(=A B C)^{4)}$. 4) If $A, B \in \mathfrak{M}$, then $A+B=A B+(A-A B)+(B-B A)$.

Theorem 3. Let it be $A_{n} \in \mathfrak{M}, B \in \mathfrak{M}$ and $V=\sum_{n=1}^{\infty} A_{n}$. Then we have $V B=\sum_{n=1}^{\infty}\left(A_{n} B\right)$ and $V-V B=\sum_{n=1}^{\infty}\left(A_{n}-A_{n} B\right)$.

[^0]Theorem 4. For $A, B, C \in \mathfrak{M}$, it holds :

$$
(A-A B) C=(C-C B) A=A C-(A C) B
$$

Theorem 5. Let it be $E, F, A, A_{n} \in \mathfrak{M}$, then it hold :

1) $(E-E F)\left(\sum_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty}\left((E-E F) A_{n}\right)$;
2) $(E-E F)-(E-E F) A=E-E(A \dot{+} F)=(E-E A)-(E-E A) F$.

Definition 6. Let \mathbb{M}^{*} be the system which consists of the elements of \mathfrak{M} and those of the form $A-A B$ for all $A, B \in \mathfrak{M}$.

We notice that we have $U A, U-U A \in \mathfrak{M}^{*}$ for any $U \in \mathfrak{M}^{*}$, $\mathrm{A} \in \mathfrak{M}$.

Definition 7. Let \mathfrak{M} and \mathfrak{M}_{1} be two sets of Somen and α be a mapping of \mathfrak{M}^{*} onto $\mathfrak{M}_{1}{ }^{*}$, which is one to one onto \mathfrak{M}_{1} when its domain is restricted to \mathfrak{M}. Suppose furthermore α satisfies the relations:
i) $\alpha(A)=\alpha(A B)+\alpha(A-A B)$ for all $A, B \in \mathfrak{M}$;
ii) $\alpha(A-A B) \circ \alpha(B)$ for all $A, B \in \mathfrak{M}$.

Then, we say that α is an isomorphic mapping of \mathfrak{M} onto \mathfrak{M}_{1}, and in the particular case $\mathfrak{M}_{1}=\mathfrak{M}$ we say that α is an automorphic mapping of \mathfrak{M}.

Theorem 6. Let α be an isomorphic mapping of \mathfrak{M} onto \mathfrak{M}_{1}, then α is one to one onto $\mathfrak{M}_{1}{ }^{*}$ and for $A, B, A_{n} \in \mathfrak{M}$ it hold:

1) $\alpha(A B)=\alpha(A) \alpha(B)$; 2) $\alpha(A-A B)=\alpha(A)-\alpha(A) \alpha(B)$; 3) $\alpha(A+B)$ $=\alpha(A) \dot{+} \alpha(B)$; 4) $\alpha\left(\sum_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \alpha\left(A_{n}\right)$; 5) $A \subseteq B$ holds if and only if $\alpha(A) \subseteq \alpha(B)$; 6) $\alpha\left((A-A B) A_{1}\right)=\alpha(A-A B) \alpha\left(A_{1}\right), \alpha((A-A B)$ $\left.-(A-A B) A_{1}\right)=\alpha(A-A B)-\alpha(A-A B) \alpha\left(A_{1}\right)$.
2. Definition 8. Let μ be a functional defined on \mathfrak{M}^{*} satisfying the following conditions :
i) $0 \leqq \mu(A) \leqq+\infty$ for all $A \in \mathfrak{M}^{*}$; ii) If $A \subseteq B$ and $A, B \in \mathfrak{M}^{*}$, then $\mu(A) \leqq \mu(B)$; iii) If $V \in \mathfrak{M}^{*}, A_{n} \in \mathfrak{M}, A_{n} \subseteq A_{n+1}$ and $V=\sum_{n=1}^{\infty} A_{n}$, then $\mu(U V) \leqq \mu\left(U A_{1}\right)+\sum_{n=1}^{\infty} \mu\left(U A_{n+1}-U A_{n+1} A_{n}\right)+\mu(U-U V)$. Then, we call μ an outer measure defined on \mathfrak{M}.

Definition 9. If $A \in \mathfrak{M}$ is an element such that

$$
\mu(U)=\mu(U A)+\mu(U-U A) \quad \text { for all } U \in \mathfrak{M}^{*}
$$

then A is said to be μ-measurable. By $\mathfrak{B}(\mu)$ we shall denote the family of all μ-measurable sets.

In order to show the measurablity of $A \in \mathfrak{M}$, it suffices to show that $\mu(E-E F)=\mu((E-E F) A)+\mu((E-E F)-(E-E F) A)$ for any $E, F \in \mathfrak{M}$ satisfying $\mu) E-E F)<+\infty$.

Theorem 7. $\mathfrak{B}(\mu)$ has the following properties: ${ }^{5)}$

1) If $A, B \in \mathfrak{B}(\mu)$, then $A+B \in \mathfrak{B}(\mu)$; 2) If $A, B \in \mathfrak{B}(\mu)$, then $A B \in \mathfrak{B}(\mu) ; 3)$ If $A, B \in \mathfrak{B}(\mu)$ and $A-A B \in \mathfrak{M}$, then $A-A B \in \mathfrak{B}(\mu)$;

[^1]4) If $A, B \in \mathfrak{F}(\mu)$ and $A \circ B$, then $\mu(A+B)=\mu(A)+\mu(B)$; 5) If $A_{n} \in$ $\mathfrak{B}(\mu)$ and $A_{n} \subseteq A_{n+1}$, then $V=\sum_{n=1}^{\infty} A_{n} \in \mathfrak{B}(\mu)$ and $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\mu(V)$.

Theorem 8. Let α be an isomorphic mapping of $\mathfrak{M i}$ onto \mathfrak{M}_{1} and μ and μ_{1} be outer measures in \mathfrak{M} and \mathfrak{M}_{1} respectively. If it hold :

$$
\mu_{1}(\alpha(A))=k(\mu(A)) \quad(k \geqq 0) \quad \text { for all } A \in \mathfrak{M}^{*}
$$

then μ-measurablity of A implies μ_{1}-measurablity of $\alpha(A)$.
3. Definition 10. Let \mathfrak{B} be a sub-system of \mathfrak{M} satisfying the following conditions :
i) If A and B belong to \Re, then so do $A \dot{+} B$ and $A B$; ii) If A_{n} belongs to \mathfrak{F} and $A_{n} \subseteq A_{n+1}$ for all n, then $\sum_{n=1}^{\infty} A_{n} \in \mathfrak{F}$. Then, \mathfrak{F} is called Baire set. We denote by \mathfrak{B} (ঙ) the smallest Baire set containing a sub-system \mathfrak{C} of \mathfrak{M}.

Theorem 9. Let \mathfrak{E} be a sub-system of \mathfrak{M} satisfying the following conditions :

1) If A and B belong to \mathbb{C}, then so do $A \dot{+} B$ and $A B$; 2) A functional m is defined on \mathfrak{E}^{*}, which consists of \mathfrak{E} and those of the form $A-A B$ for all $A, B \in \mathbb{C}$, and satisfies that $0 \leqq m(A)<+\infty$ for all $A \in \mathbb{S}^{*}$ and that $m(U)=m(U B)+m(U-U B)$ for all $U \in \mathfrak{C}^{*}$ and $B \in \mathscr{E}$; 3) Let it be $U_{n} \in \mathfrak{E}^{*}, U_{n} \subseteq U_{n+1}$ and $A=\sum_{n=1}^{\infty} U_{n} \in \mathscr{E}$, then $m(A) \leqq \lim _{n \rightarrow \infty} m\left(U_{n}\right)$.
Then, there exists a functional $\mu(A)$ defined on \mathfrak{F} (ङ) having the following properties :
$\left.1^{\prime}\right) 0 \leqq \mu(A)<+\infty$ for all $\left.A \in \mathfrak{B}(\mathfrak{E}) ; 2^{\prime}\right)$ If $A, B \in \mathfrak{F}(\mathbb{E})$ are disjunct, then $\left.\mu(A+B)=\mu(A)+\mu(B) ; 3^{\prime}\right)$ If $A \in \mathbb{E}$, then $\mu(A)=$ $\left.m(A) ; 4^{\prime}\right)$ If $A_{n} \in \mathfrak{F}(\mu)$ and $A_{n} \subseteq A_{n+1}$, then $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\mu\left(\sum_{n=1}^{\infty} A_{n}\right)$.

Corollary 1. Let it be \mathfrak{C} and m as in Theorem 9. Besides, if $\mathfrak{M}^{*}=\mathfrak{M}$ then there exists a functional μ defined on the smallest Baire set $\mathfrak{F}_{c}(\mathbb{E})$ such that $A-A B \in \mathfrak{F}_{c}(\mathbb{E})$ for all $A, B \in \mathfrak{B}_{c}(\mathbb{E})$ and that $\mathfrak{B}_{\mathrm{c}}(\mathbb{E}) \supseteq \mathfrak{E}$, and satisfying 1^{\prime}), 2^{\prime}), 3^{\prime}), 4^{\prime}) in Theorem 9 for $\mathfrak{F}_{c}(\mathbb{E})$ in stead of $\mathfrak{V}(\mathbb{E}) .{ }^{\text {e }}$

Theorem 10. Let it be \mathfrak{C} and m as in Theorem 9 and α be an automorphic mapping of \mathfrak{M}. If α is a mapping of \mathscr{C} onto itself and if $m(\alpha(A))=k(m(A))(k \geqq 0)$ for all $A \in \mathbb{E}$. Then, α is also a mapping of $\mathfrak{F}(\mathbb{E})$ onto itself and $\mu(\alpha(A))=k(m(A))$ for all $A \in \mathfrak{B}(\mathbb{E})$.

Applications of the above theory to a system of subsets of a set and to a system of non-negative functions defined on a set will be given in another article. ${ }^{77}$
6) Cf. [3].
7) Cf. [4], [5], [6], [7], [8].

References.

1) C. Carathéodory: Vorlesungen über reelle Funktion (1927).
2) C. Carathéodory : Entwurf für eine Algebraisierung des Integralbegriffs. Sitzungsb. der Bay. Akad. Wiss. zu München, (1938), 27-68.
3) E. Hopf: Ergodenthéorie (1937).
4) J. von Neumann : Functional operators (1950).
5) P.J. Daniell: A general form of integral. Ann. of Math., 19 (1917), 279294.
6) S. Banach: The Lebesgue integral in abstract spaces (S. Saks: Theory of the integral, 320-330) (1937).
7) M.H. Stone: Note on integration I. Proc. Nat., Acad. Sci. U.S.A., 34(1948), 336-343.
8) Y. Kawada: A note on integration. Sci. Pap. of Coll. of Gen. Edu. Univ. of Tokyo, Vol. 1, No. 1 (1951).

[^0]: 4) If we write $A B C$, we have no confusion.
[^1]: Б) Cf. [2].

