40. Probability-theoretic Investigations on Inheritance. VIII ${ }_{1}$. Further Discussions on Non-Paternity Problems.

By Yûsaku Komatu.
Department of Mathematics, Tokyo Institute of Technology and Department of Legal Medicine, Tokyo University. (Comm. by T. Furuhata, m.J.a., March 12, 1952.)

1. Problems to be discussed.

In the last chapter of preceding Note ${ }^{1)}$, we have discussed various problems on proving non-paternity, with the aid of probabilities on mother-child combinations with respect to one child family. The problems treated there have concerned, however, exclusively those in which the paternity for a child is deniable by a third person against its parents or its mother. More precisely spoken, a typical problem has been to determine at how many rate a person can assert his non-paternity based upon an inheritance character under consideration, if he falls under suspicion to be a father of a child produced from a couple.

Besides the problems of this sort, there may occur those of another sort, which will be discussed in the present chapter; namely, non-paternity problems amongst a couple. To speak more precisely, a typical problem is as follows: If a wife has become intimate with a man and given birth to a child, at how many rate can her husband assert his non-paternity, based upon an inherited character, against the child? Hence, while the previous problem has concerned the non-paternity of a defendant in case of adultery, the present problems concerns that of a plaintiff.

From a view-point of the whole probability of proving nonpaternity, both problems lead, of course, to quite an identical result. Indeed, in either of the problems, given a pair of a woman and her child, it is to be determined, at how many rate a man being not a father of the child-a third man in the previous problem or a husband of the woman in the present problem-can be proved as really not to be a true father. Consequently, every sub-pro-

[^0]bability with respect to the given type of a woman in question coincides also each other. The results which will be afresh obtained by discussions of the present problem are thus the sub-probabilities with respect to pairs of matings.

By summing up the sub-probabilities under consideration, we shall again confirm a result on the whole probability derived in the preceding chapter. Besides a decomposition of the whole probability into such sub-probabilities, we shall consider later a decomposition with respect to type of child, by means of which a mutual relation between two decompositions will be made still more clear. In fact, the position of child will show a strong similarity in both problems.

We now consider, as before, an inherited character consisting of m allelomorphic genes $A_{i}(i=1, \ldots, m)$. Given a fixed mating, the number of possible types of a child is then evidently equal to 1 or 2 if mother is homozygotic and to 2 or 3 or 4 if she is heterozygotic. On the other hand, as shows a table on mother-child combinations listed in $\S 1$ of IV, the number of possible types of a child produced from a fixed mother of homozygotic or heterozygotic type is equal to m or $2 m-1$, respectively. Hence, the respective differences $m-1$ or $m-2$ and $2 m-3$ or $2 m-4$ or $2 m-5$ represent the numbers of possible types of a child against whom the husband can assert non-paternity, according to the wife (the mother of child) of homozygotic or heterozygotic type.

As stated in (1.1) of I, there exists, in general, $\frac{1}{2} m(m+1)$ possible genotypes. However, those except the above-stated m or $2 m-1$ genotypes of child are out of question. Since those exceptional types can never appear in a child of a given mother, the protest against her unchastity is then quite unreasonable so that she must be released from responsibility concerning unchastity.

2. Sub-probability with respect to a type of wife.

If a wife and her husband are both of the same homozygote, $A_{i c}$ say, then a child produced by this couple must be always also of the same type. On the other hand, possible types of child produced by a mother $A_{i i}$ are, in general, those containing the gene A_{i}, i.e., $A_{i l}$ and $A_{i j}(j \neq i)$. Hence, the husband can assert his nonpaternity against any heterozygotic child $A_{i j}(j \neq i)$ among them. The probability in which a mother $A_{i l}$ produces a child $A_{i j}$ is equal to p_{j}. In fact, while in the table in $\S 1$ of IV the probability $\pi(i i ; i j)=p_{i}^{2} p_{j}$, the frequency $\bar{A}_{i i}=p_{i}^{2}$ of a wife (mother of child) being also taken into account, has been listed, a fixed type of wife is considered in the present problem and hence the value $\pi(i i ; i j) / \overline{A_{i i}}$ $=p_{j}$ must be used; cf. (1.27) of IV.

Now, given a couple of wife $A_{i j}(i \leqq j)$ and her husband $A_{h k}(h \leqq k)$, let the probability in which the husband can assert his non-paternity against a child produced by the wife together with a man chosen at random with respect to types be denoted by

$$
\begin{equation*}
U(i j, h k) \quad(i, j, h, k=1, \ldots, m ; i \leqq j ; h \leqq k) ; \tag{2.1}
\end{equation*}
$$

the symmetry relations analogous to (1.3) of IV being taken into account. Then, the above argument leads to

$$
\begin{equation*}
U(i i, i i)=\sum_{j \neq i} \pi(i i ; i j) / \bar{A}_{i l}=\sum_{j \neq i} p_{j}=1-p_{i} \tag{2.2}
\end{equation*}
$$

If a couple consists of a wife $A_{i i}$ and her husband $A_{i h}(h \neq i)$, then possible types of a child produced by this couple are $A_{i i}$ and $A_{i n}$, and hence we obtain

$$
\begin{equation*}
U(i i, i h)=\sum_{j \neq i, h} p_{j}=1-p_{i}-p_{h} \quad(h \neq i) ; \tag{2.3}
\end{equation*}
$$

we get similarly

$$
\begin{array}{lr}
U(i i, h h)=p_{i}+\sum_{j \neq i, h} p_{j}=1-p_{h} & (h \neq i), \\
U(i i, h k)=p_{i}+\sum_{j \neq i, h, k} p_{j}=1-p_{h}-p_{k} & (h, k \neq i ; h \neq k) . \tag{2.5}
\end{array}
$$

The cases of heterozygotic wives can be treated also in a similar manner. If a couple consists of a wife $A_{i j}(i \neq j)$ and her husband $A_{i l}$, then he can assert his non-paternity against any child of types, produced by her, except $A_{i l}$ and $A_{i j}$, i.e., against $A_{j j}, A_{i k}, A_{j k}(k \neq i, j)$. Hence, we get

$$
\begin{align*}
U(i j, i i) & =\left(\pi(i j ; j j)+\sum_{k \neq i, j}(\pi(i j ; i k)+\pi(i j ; j k))\right) / \bar{A}_{i j} \tag{2.6}\\
& =\frac{1}{2} p_{j}+\sum_{k \neq i, j}\left(\frac{1}{2} p_{k}+\frac{1}{2} p_{k}\right)=1-p_{i}-\frac{1}{2} p_{j} \quad(i \neq j) .
\end{align*}
$$

In quite a similar manner, we obtain the following results:

$$
\begin{align*}
& U(i j, i j)=\sum_{k \neq i, j}\left(\frac{1}{2} p_{k}+\frac{1}{2} p_{k}\right)=1-p_{i}-p_{j}(i \neq j), \tag{2.7}\\
& U(i j, i h)=\frac{1}{2} p_{j}+\sum_{k \neq i, j, h}\left(\frac{1}{2} p_{k}+\frac{1}{2} p_{k}\right)=1-p_{i}-\frac{1}{2} p_{j}-p_{h} \quad(i \neq j ; h \neq i, j), \tag{2.8}\\
& U(i j, h h)=\frac{1}{2} p_{i}+\frac{1}{2} p_{j}+\frac{1}{2}\left(p_{i}+p_{j}\right)+\sum_{k \neq i, j, h}\left(\frac{1}{2} p_{k}+\frac{1}{2} p_{k}\right)=1-p_{h} \tag{2.9}\\
& \quad(i \neq j ; h \neq i, j), \\
& U(i j, h k)=\frac{1}{2} p_{i}+\frac{1}{2} p_{j}+\frac{1}{2}\left(p_{i}+p_{j}\right)+\sum_{l \neq i, j, h, k}\left(\frac{1}{2} p_{l}+\frac{1}{2} p_{l}\right)=1-p_{h}-p_{k} \\
&(i \neq j ; h \neq k ; h, k \neq i, j) .
\end{align*}
$$

All the possible cases have thus essentially been worked out. For instance, $U(i j, j j)$ and $U(i j, j h)$ can immediately be written down in view of (2.6) and (2.8), respectively.

[^0]: 1) Y. Komatu, Probability-theoretic investigations on inheritance. I. Distribution of genes ; II. Cross-breeding phenomena ; III. Further discussions on crossbreeding; IV. Mother-child combinations; V. Brethren-combinations; VI. Rate of danger in random blood transfusion ; VII. Non-paternity problems. Proc. Jap. Acad. 27 (1951), I. 371-377; II. 378-383, 384-387; III. 459-464, 466-471, 472-477, 478-483; IV. 587-592, 593-597, 598-603, 605-610, 611-614, 615-620; V.; 28 (1952), VI. 54-58; VII. 102-104, 105-108, 109-111, 112-115, 116-120, 121-125. These will be referred to as I; II; III; IV; V; VI; VII.
