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3. Another method of attack.

Wiener has arrived at his result on the whole probability of
detecting interchange of infants, given in (2.16), by calculating the
36 partial probabilities one after another and then summing up
them. But, this method will become rapidly troublesome as the
number of possible types of an inherited character increases. In
fact, if there exist, in general, m* different phenotypes, then the
possible matings amount to m*(m*+1)/2 kinds so that the com-
binations of matings to be considered amount to m**(m*-+1)}4 in
number. For instance, this number is equal to 100 or 441 for
m*=4 (ABO blood type) or m*=6 (4,4,B0 blood type), respectively.
Even when the combinations with identically vanishing probability
are omitted and further only the half of the remaining combinations
are considered in view of symmetry, they amount yet to

(B.1) FEm*(m* +1)—Im*(m* +1)) =§(m* —Lym*(m* +1)(m* +2),
which is equal to 45 or 210 for m*=4 or m*=6, respectively.

On account of the reason just stated, we shall now again deal
with the problem by another method of attack which will diréctly
apply also to general mode of an inherited character.

First, we observe the first mating of Mx M. Then, the detec-
tion of interchange is possible when and only when the true child

of the second mating is not M. Since the child different from M
appears with frequency 1—s?, we get the partial probability

3.2) s(1—g%).

Similarly, in case of the first mating Nx N, the partial probability
is given by

(8.3) (12,
and in case of the first mating M x N, it is equal to
(3.4) 2s*t*(1 — 2st).

The above three are the cases where the first mating can produce
only one type of child,
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Next, we observe the first mating of MxMN, so that the
child N cannot be produced. Hence, if the apparent child of the
first mating is N, then the interchange is detectable. But, besides
this, there are further cases where the detection of interchange
is possible; namely, the case where the apparent child of the
second mating is M and the second mating can produce MN but can-
not M——-the apparent child of the first mating is then necessarily
MN-—, and the case where the apparent child of the second
mating is MN and the second mating can produce M but cannot
MN-—the apparent child of the first mating is then necessarily
M——. The former corresponds to the second mating of Mx N or
NxMN and the latter to that of MxM. But, among those, the
case where the second mating Nx MN produces N having been
already taken into account, there remains, in Nx MN, to consider
the true child MN which appears with probability 1/2. Thus, the
partial probability with respeet to the first mating of Mx MN
becomes

(8.5) 4s%t-t* + 25° (25 + 4st?+ §) + 28% - 8* =28%¢(s* + 2t*(1 + 8)).

Similarly, in case of the first mating N x MN, the partial probability
is equal to

(8.6) 45t 5+ 25828 + 45t - }) + 288+ £ =2st3(t*+ 25*(L + 1)).

Last, the first mating MN x MN can produce every type of
child. But, if the apparent child of the second mating is M; N ;
or MN and the second mating cannot produce the respective type,
then the detection of interchange is possible. Such matings are
MxN, NxN, NxMN; MxM, MxN, MxMN ; or MxM, NxN,
respectively. Hence, we get the partial probability

S (2% + t* + 4st®) + s’ (st + 28787 + 45°E) + 287 (s + £)
=g**(8 — 8st + 28°t?).

The partial probabilities obtained in (3.2) to (3.7) are the ones
already listed in the last column of the table at the end of §2. It
is the matter of course that the total sum of these partial prob-
abilities is just equal to the whole probability given in (2.16).

We notice here that the process of the method just mentioned
can be performed in an automatical manner. To explain it, we now
prepare a table corresponding to the one listed in §3 of I for
general mode of inheritance.

We first observe the mating Mx M accompanied by its child
M. The row of MxM in the table contains the vanishing prob-
ability for children N and MN. Accordingly, we mark the prob-
abilities lying in the same columns as N and MN; indicated by

3.7)
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the mark 4 in the table. The sum of the marked probabilities is
equal to 1-—s?, yleldlng the second factor of (3.2). To each mating
= e .. . we apply an analogous proce-
Prob. of Freq of child dure, obtaining for Mx N,

. MxMN, NXN, NXMN7
mating | M N . MN  MNxMN the quantities 1

Mating

MxM st gt 0 0 —2st, 8, 1—¢*, s, 0, respec-
MxN 282t 0 0 29224 tively, among which the first
MxMN| 483t 283t 0 2s%ta four yield the second factor

NxN # 0 ta 0 of (8.4), that of the first
NxMN| 4st3 0 23t3A  2g3Ae term in (38.5), that of (3.3),
MNxMN|  4g22 g2 girA  2grprA and that of the first term in
(8.6), respectively. The total
sum of these probabilities multiplied by the corresponding mating-
probabilities represents the probability of detecting the interchange
of infants by means of the first mating and an interchanged infant
alone.

The matings MxM, MxN and NxN can produce only one
kind of respective child, while the remaining three matings can
produce at least two kinds of child. We observe the mating M
x MN which can never produce N, as shown by vanishing probability
in the table. In the column of M the vanishing probability appears
for Mx N, Nx N and Nx MN. In the rows of three last-mentioned
matings the non-vanishing probabilities except those marked already
in the first process with respect to Mx MN are marked now;
indicated by the mark ®. The sum of the marked probabilities is
equal to 2s%2+4 2s#’, yielding the second factor of the second term
in the left-hand side of (3.5). To the column of MN an analogous
process is applied, yielding the second factor of the third term, i.e.,
s, in the left-hand side of (8.5). To each apparent child of the
remaining second matings Nx N and N x MN which is possible from
first mating an analogous process will be applied. We then obtain
the second factors of the second and third terms in the left-hand
side of (8.6), as well as those of the first, second and third terms
in the left-hand side of (3.7). The total sum of these probabilities
multiplied by the corresponding frequencies of apparent children
represents the probability of detecting the interchange only by
taking the second triple into account.

The procedure just explained with respect to MN type ecan
evidently be generalized also to the general mode of inheritance.
The details will be discussed in the following sections.




524 Y. KoMATU. [Vol. 28,

4. Preparatory considerations.

In order to prevent the interruption on the way of our main
discourse, we make here beforehand some preparatory considerations.
Let us designate by

4.1) o(—ij,+hk) (2,5, h, k=1, ..., m; (i)==(hk))
the probability of an event that a mating mot able to produce A,
appears and 48 accompanied by its child A,,. Consequently, for
instance, the probability of an event that a mating not able to
produce A, appears and is accompanied by its child 4,, or 4,,
((fo)==(hk)) is given additively by

4.2) ¢(—1j, + bk +fg) = (—1j, + hk) + ¢(—ij, +fg).
We shall now determine the quantities defined in (4.1) explicitly.

First, for ¢(—1i,+th) (h==1), the following matings, the order
being indifferent, are to be considered:

4.8 Ay} Ay Ayx Agy A X Ay Ay X Agyy Ay Apps Ay x Ay
(4, 1=K, R).
These matings accompanied by a child A4,, appear with respective
probabilities
4.4)  2pipi, 20ionps 2DiDi, 2DiDADs 2DiDADs 2PiDNDsPI
The sum of all the probabilities contained in (4.4) gives

(4.5) so(—ii,+ih)=2pmn(pmn+ Pt (Dt+2p4) 30 Dyt > pml)
: PN NN 3

=2poa(1—1py) (h=f0).
Next, for ¢(—ih,+i1) (h=ki), the matings to be considered are
4.6) AuxAy, Aux Ay, Ayx Ay AyxAy (g, I, h; 3=ED),

with corresponding probabilities of producing A4,:

4.7) Dis 2DiDs DiD3 2DiDsDi
Thus, we get by summation
wg P ri=pl(pi+2m Do+ S pi+2 S o)
=pil —pu)’ (h=E).
For ¢(—i,+hh) (h==t), the matings to be considered are
(4.9) A X Ay A X Ainy Ay X Apys A X Apy,s An{X Ah.j, AI.{XAM
(7, 1=, b gD,
with corresponding probabilities of producing A4,,:
(4.10) Dis 20Dy 2D3Dss 2DDADs DiDS) 2DaDsDie
Thus, we get
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@11y e m)=p(pi+ 2mn+2putp) 3 0ot 303
. , LR sn )
+2 5 p,p,)=pil—p) (h=to).

For ¢(—1t,+ hk) (h,k==i; h==k), the matings to be considered are
A, X Ay A X Apis AIIJ& X Akk’ A X Ay Ann X Aixy Am X Apiy

4.12) A x Ay Apx Ay Ay X Argy A Angy A< Ay A, x A,
A X Aygy Ay x Aryy Apyx Asys A, x Ay Ayx Ay,

@, 11, h, k; §=1),
with corresponding probabilities of producing A,,:
2080k, 20403 203Di, 20hD% 2Di0iDks 2DiDADss
(4.13) 2pp,Di, 20,0k 2001PPs> 2DDWDkDss 2D DD 2DADKD ;)
20,0i0;55 20,0%055 2040xD% 204DiPiP1s 2D DD s Dre

Thus, we get by summation

¢( i, + W)= 20,04 D+ DE+ 20D+ 2DDa+ D)

(4.14) + 20+, + pk) E. p;+ 2 pi+2 2 pmz)
h J¥t, Mk FRETN N
=2p,p;(1— D)) (h, k==i; h=kk).

For ¢(—hk, +1i) (h, k==i; h==k), the matings to be considered are
(4.15) AuxAy, AuxAyy AuxApy AuX Ay, Apx Ay, Ayx Ay,
Ay x Ay, Apx Ay, Ayyx Ay, Ayyx Ay G, 1=,k k; j=HD),
with corresponding probabilities of producing A,:
(4.16) pt’ 21731)/,, zpipk, p%pfu p%plzc’ 220?1)1,
2pi0uD;s 2PiDiDss DID}s 201D D
Thus, we get
(17)  p(—Hle,+ i) =pi( P+ 20D+ D) + Pio+ B}
+2(pi+ pu+ pk) 2Pyt > 0i+2 3 ’pml)
' ’k j* "‘7 J’ l* h/'
=pi(1 —2p,p:) (y k=F; h==k).
For ¢(—1ih,+1ik) (b, k==i; h=Fk), the matings to be considered are

(4.18) AuxAyy Apex Ay Apx Ay Aux Apy Ay X Ay Ay x Ay,
Aux Aigy Ay X Aigy A Agyy A x Aiyy Aiyx Ay (9,1F1,0,F),

with corresponding probabilities of producing A4,,:

(4.19) 2pips 2P0k 20iDky 2D 2DPADE, 2DIDAD;
20i0:Dp 2D DaDKDs 200Dy 2DDIDY 2DiDiDSD
Thus, we get
@(—th, + k) =2p¢pk(p%+ D+ 20+ D) D
(4.20) + @t Pt 20) S0+ 3 P

=2pp,(1—p,— pm,,) (, k==i; h=Ek).
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Last, for ¢(—1J,+hk) (i=Rj; h=:k; i, j==h, k), the matings to be
congidered are

Ay X Apiey Aiie X Apiey Apn X Ay Apic X Apiy Ain X Ay Ay X Ay

Ay X Apiy Apn X Aiiy Ap X Apiey A X Ay Ay X Apiy A X Ay

(4.21) ApXAnes Ariex Ay Apn X Ay A X Apiy A X Apyy Ay X Ay
A X Apy A x Ay Ay X Apgy A X Apyy A< Ayy

(¢, f==i, 4, b, k),

with corresponding probabilities of producing A4,,:

2pip, 20,08 20iD%, 200D, 20IDwDis 203D,D:s
4.22) 2D, 0iDrs 2D0ADxs 2DsDiDis 2DsDiDis 2DDWDEs 20:DnDis
¢ 2 2 9 2 293 2 2 2 2
DsPnPrs &DsPrPks EPrPrDPis &DnPxPis &P DxD1s &P DPxPis
2pDuDDy 2DiDADDY 2DsPADED1s 2D0aDiD1s 2DuDkDD s

Thus, we get by summation

o(—1j, +hk) =2p,.pk(pi+ D+ 2p,0i + pi+ D+ 2(p, + ) (P, + Di)

(4.28) +2(putoetoitp) 3 o+ 3 pmf)
134, 5, hy & 1, 14 5y Iy K
=2p,p.(1—2p;p)) (=75 h=Ek; 4, ==h.k).

All the possible cases have thus been essentially worked out.
It would be noticed that if A,, and A,. have no common gene,
then the relation, also immediately evident,

(4.24) P(—ij, + hlk)=A,,(1—A,)

holds, as really seen in (4.11), (4.14), (4.17) and (4.23), while if A,
and A,, have a common gene, the same is not true, as seen in (4.5),
(4.8) or (4.20).

—To be continued—



