2. On Homotopy Classification and Extension

By Minoru NAKAOKA

Department of Mathematics, Osaka City University (Comm. by Z. SUETUNA, M.J.A., Jan. 12, 1953)

In the present note we give a homotopy classification theorem for mappings of an (n+k)-dimensional complex into a finite complex Y such that

(1) $\pi_i(Y)=0$ for $0 \le i < n$ and n < i < n+k, and the corresponding extension theorem, where $n \ge k+2$ and $k \le 6.$

§ 1. Let $X(\ni x_0)$ be an arcwise connected and simply connected space, and let $X^* = X \cup e^{n_1} \cup \cdots \cup e^{n_s}$, where the boundary $\dot{e}^{n_i}(\ni q_i)$ of each cell e^{n_i} is attached to X by a map $f_i: (\dot{e}^{n_i}, q_i) \to (X, x_0)$. We refer to such a space X^* as $\{X | e^{n_1}, \cdots, e^{n_s}; f_1, \cdots, f_s\}$. Suppose that $g_i: (E^r, \dot{E}^r, p_0) \to (e^{n_i}, \dot{e}^{n_i}, q_i)$ $(i=1, \cdots, t \le s)$ is a representative of the homotopy class $\{g_i\} \in \pi_r(e^{n_i}, \dot{e}^{n_i}, q_i)$, and that a condition $\sum_{i=1}^t \{f_i \circ (g_i | \dot{E}^r)\} = 0$ is satisfied in $\pi_{r-1}(X, x_0)$. Then we can construct a map of an r-sphere S^r in X^* as follows: Let \mathcal{E}^r_i $(i=1, 2, \cdots, t)$ be t disjoint r-cells in S^r which have a single point p in common, and let $\mathcal{E}^r = \bigcup_{i=1}^t \mathcal{E}^r_i, \dot{\mathcal{E}}^r = \bigcup_{i=1}^t \dot{\mathcal{E}}^r_i$. Choose an orientation of S^r , and orient each \mathcal{E}^r_i in agreement with S^r . If we map each \mathcal{E}^r_i to e^{n_i} by the map g_i , we get a map $g': (\mathcal{E}^r, \dot{\mathcal{E}}^r, p) \to (X^*, X, x_0)$ such that $g' | \dot{\mathcal{E}}^r$ is nullhomotopic in X. Map now $\overline{S^r - \mathcal{E}^r}$ in X by an arbitrary nullhomotopy of $g' | \dot{\mathcal{E}}^r$, then we obtain a map of S^r in X^* . This is the desired map and such a map is denoted by $\langle g_1, g_2, \cdots, g_t | X \rangle$.

As for the spherical-maps, we use the following notations: $i_r: S^r \to S^r \ (r \ge 1)$ is the identity map; $\eta_r: S^{r+1} \to S^r \ (r \ge 2), \ \nu_r: S^{r+3} \to S^r \ (r \ge 4)$ are the suspensions of the Hopf maps $\eta_2, \ \nu_4$ respectively. Let $\partial_n: \pi_{n+1}(e^{r+1}, \dot{e}^{r+1}) \approx \pi_n(S^r)$ be the homotopy boundary, then we refer to maps in the homotopy classes $\partial_r^{-1}\{i_r\}, \ \partial_{r+1}^{-1}\{\eta_r\}, \ \partial_{r+3}^{-1}\{\nu_r\}$ as $\bar{i}_{r+1}, \ \bar{\eta}_{r+1}, \ \bar{\nu}_{r+1}$ respectively.

§2. Using the homology theory of Abelian groups due to Eilenberg-MacLane³⁾ and the known results relative to the homotopy

¹⁾ Full details will appear in the Journal of the Institute of Polytechnics, Osaka City University. The first part of the details was already presented to the editor of the journal.

²⁾ A general theory of this problem was given by S. Eilenberg-S. MacLane (cf. Proc. Nat. Acad. Sci., U.S.A., IV).

³⁾ S. Eilenberg-S. MacLane: Cohomology theory of Abelian groups and homotopy theory II. Proc. Nat. Acad. Sci., U.S.A., **36**, No. 11 (1950); IV ibid., **38**, No. 4 (1952).

groups of spheres⁴), we can construct a concrete (n+k)-dimensional cell complex $R_n^k(h)$ such that $\pi_i(R_n^k(h))=0$ for $0 \leq i < n$, n < i < n+k and such that $\pi_n(R_n^k(h)) \approx I_h$ $(n > k, k \leq 6)$, where I_h denotes the integers mod h.

Example 1. The case h=0. $R_n^1(0)=S^n$, $R_n^2(0)=\{S^n|e_1^{n+2}; \alpha^1=\gamma_n\},$ $R_n^3(0)=\{R_n^2(0)|e_1^{n+3}; \alpha^2=<2\bar{\iota}_{n+2}^{(1)}|S^n>\},$ $R_n^4(0)=\{R_n^3(0)|e_1^{n+4}; \alpha^3=\nu_n\},$ $R_n^5(0)=\{R_n^4(0)|e_1^{n+5}; \alpha^4=<6\bar{\iota}_{n+4}^{(1)}, \bar{\gamma}_{n+3}^{(1)}|R_n^2(0)>\},$ $R_n^6(0)=\{R_n^5(0)|e_1^{n+6}, e_2^{n+6}; \alpha_1^5=<\bar{\nu}_{n+2}^{(1)}|S^n>, \alpha_2^5=<\bar{\gamma}_{n+4}^{(1)}|S^n>\},$ $R_n^7(0)=\{R_n^6(0)|e_1^{n+7}, e_2^{n+7}; \alpha_1^6=<2\bar{\iota}_{n+6}^{(1)}, -\bar{\nu}_{n+3}^{(1)}|R_n^2(0)>,$ $\alpha_2^6=<2\bar{\iota}_{n+6}^{(2)}|S^n \cup e_1^{n+4}>\}.$

Example 2. The case h=2.

No. 1]

$$\begin{split} R_n^1(2) &= \{S^n | e_1^{n+1}; 2i_n\}, \quad R_n^2(2) = \{R_n^1(2) | e_1^{n+2}; \alpha^1\}, \\ R_n^3(2) &= \{R_n^2(2) | e_1^{n+3}, e_2^{n+3}; \quad \alpha^2, \beta^2 = <\bar{\gamma}_{n+1}^{(1)} | S^n > \}, \\ R_n^4(2) &= \{R_n^3(2) | e_1^{n+4}, e_2^{n+4}; \quad \alpha^3, \beta^3 = <2\bar{\iota}_{n+3}^{(2)}, \bar{\gamma}_{n+2}^{(1)} | R_n^1(2) > \}. \\ R_n^5(2) &= \{R_n^4(2) | e_1^{n+5}, e_2^{n+5}; \quad <2\bar{\iota}_{n+4}^{(1)}, \bar{\gamma}_{n+3}^{(1)}, 8\bar{\nu}_{n+1}^{(1)} | R_n^2(0) >, \\ \beta^4 &= <\bar{\gamma}_{n+3}^{(1)}, 3\bar{\nu}_{n+1}^{(1)} | R_n^2(0) > \}, \\ R_n^6(2) &= \{R_n^5(2) | e_1^{n+6}, e_2^{n+6}, e_3^{n+6}; \quad \alpha_1^5, \alpha_2^5, \beta^5 &= <2\bar{\iota}_{n+5}^{(2)}, \bar{\gamma}_{n+4}^{(2)} | R_n^3(2) > \}, \\ R_n^7(2) &= \{R_n^6(2) | e_1^{n+7}, e_2^{n+7}, e_3^{n+7}, e_1^{n+7}; \quad \alpha_1^6, \alpha_2^6, \beta_1^6 &= <\bar{\nu}_{n+3}^{(2)} | R_n^1(2) >, \\ \beta_2^6 &= <\bar{\gamma}_{n+5}^{(1)}, \bar{\gamma}_{n+5}^{(2)} | R_n^4(0) \bigcup e_1^{n+1} > \}. \end{split}$$

Example 3. The case h=3.

$$egin{aligned} R_n^i(3) &= \{S^n | e_1^{n+1}; 3i_n\} & (i\!=\!\!1,2,3), \ R_n^i(3) &= \{R_n^3(3) | e_1^{n+4}; lpha^3\}, \ R_n^5(3) &= \{R_n^4(3) | e_1^{n+5}, e_2^{n+5}; \quad <\!\!3ar{i}_{n+4}^{(1)}, -ar{
u}_{n+1}^{(1)} | S^n \!>, \quad &\!\!\gamma^4 \!=\! <\!\!8ar{
u}_{n+1}^{(1)} | S^n \!>\}, \ R_n^6(3) &= \!\!R_n^r(3) \!=\! \{R_n^5(3) | e^{n+6}; \quad &\!\!\gamma^5 \!=\! <\!\!3ar{i}_{n+5}^{(2)} | R_n^1(3) \!>\}. \end{aligned}$$

In the above, the notations $\overline{\eta}_r^{(l)}$, $\overline{i}_r^{(l)}$, $\overline{i}_r^{(l)}$, (l=1,2) denote the maps $\overline{\eta}_r$: $(e^{r+1}, \dot{e}^{r+1}) \rightarrow (e_l^r, \dot{e}_l^r)$, $\overline{i}_r: (e^r, \dot{e}^r) \rightarrow (e_l^r, \dot{e}_l^r)$ respectively. The orders of the elements $\{\alpha^k\} \in \pi_{n+k}(R_n^k(0))$, $\{\beta^k\} \in \pi_{n+k}(R_n^k(2))$, $\{\gamma^k\} \in \pi_{n+k}(R_n^k(3))$ are as follows: The orders of $\{\alpha^k\}$ (k: even), $\{\beta^k\}$ (k: odd) and $\{\gamma^5\}$ are all zero, and the orders of $\{\alpha^3\}$, $\{\gamma^4\}$ are 6, 3 respectively. The remainders are all of order 2.

§3. Let $H^{q}(K, L; G)$ be the q-th cohomology group of a complex pair (K, L) with coefficients in G. Suppose that $t: G \rightarrow G'$ is a

⁴⁾ J. P. Serre: Sur les groups d'Eilenberg-MacLane, C. R. (Paris) 234 (1952), and Sur la suspension de Freudenthal, ibid., 234 (1952).

H. Toda: Generalized Whitehead products and homotopy groups of spheres, to appear in the journal indicated in footnote 1.

M. NAKAOKA

homomorphism such that rt=0 (r=2,3). Following N.E. Steenrod⁵, we can define for any even *i* the cyclic reduced power

(2)
$$\operatorname{St}_{r}^{i}(t): H^{a}(K,L;G) \to H^{a+i}(K,L;G_{r}^{\prime}).^{\mathfrak{G}}$$

If *i* is odd, we have for any homomorphism $t: G \to G'$ the cyclic reduced power $\operatorname{St}_r^i(t): H^{\mathfrak{q}}(K,L;G) \to H^{\mathfrak{q}+i}(K,L;G')$. Especially we can consider that $\operatorname{St}_r^1(t)$ takes values in $H^{\mathfrak{q}+i}(K,L;rG')$:⁶⁾

(3)
$$\operatorname{St}^{1}_{r}(t): H^{q}(K, L; G) \to H^{q+i}(K, L; {}_{r}G').$$

Modifying the definition of the cyclic reduced power, we can define^{τ}) an operation

(4)
$$\overline{\operatorname{St}}_{r}^{i}(t): H^{q}(K,L;G) \to H^{q+i}(K,L;G')$$

for any given homomorphism $t: G \rightarrow G'_r$ and any odd *i*. *t* is called a trace for the reduced power. $\operatorname{St}^i_r(t)$ satisfies the following properties: i) $f^*\operatorname{St}^i_r = \operatorname{St}^i_r f^*$ for any map *f*, ii) $\partial^*\operatorname{St}^i_r = \operatorname{St}^i_r \partial^*$ for the coboundary operator ∂^* , iii) $(f-g)^*\operatorname{St}^i_r = \operatorname{St}^i_r(f-g)^*$ where $(f-g)^*$ denotes the difference homomorphism for maps *f*, *g* such that f|L=g|L, iv) $r\operatorname{St}^i_r = 0$. As for St^i_r , we have also the similar properties.

Let Ω^8 be the quarternion projective plane and Ω^{n+4} the (n-4)fold suspension of Ω^8 $(n \ge 4)$. If we denote by $\{e^{n+k}(r)\}$ a generator of $H^{n+k}(\Omega^{n+4}; I_r)$, we have

$$\operatorname{St}_{r}^{4}\left\{e^{n}(0)\right\} = \pm \left\{e^{n+4}(r)\right\}$$
 (r=2, 3)

§ 4. Let $\{a\}$ be an element of $\pi_n(Y)$, and $\alpha^k : S^{n+k} \to R_n^k(0)$ the map defined in Example 1. Let us consider S^n as the *n*-skelton of $R_n^k(0)$, and let $a': S^n \to Y$ be a representative of a. Extend a' to $\bar{a}': R_n^k(0) \to Y$ and map $\{a\}$ to $\{\bar{a}' \circ \alpha^k\} \in \pi_{n+k}(Y)$. Then this mapping determines a homomorphism α_*^k of $\pi_n(Y)$ of $\pi_{n+k}(Y)$ if k=1,3,5, and to $(\pi_{n+k}(Y))_2$ if k=2, 6, and to $(\pi_{n+k}(Y))_6$ if k=4. Similary, we can define a homomorphism β_*^k of $_2(\pi_n(Y))$ to $\pi_{n+k}(Y)$ if k=2,4,6, and to $(\pi_{n+k}(Y))_2$ if k=3,5, by using $\beta^k: S^{n+k} \to R_n^k(2)$. Furthermore we can define a homomorphism γ_*^k of $_3(\pi_n(Y))$ to $\pi_{n+k}(Y)$ if k=4, and to $(\pi_{n+k}(Y))_3$ if k=5, by using $\gamma^k: S^{n+k} \to R_n^k(3)$.

Finally let $i_*: \pi_n(Y) \to \pi_n(Y)$, $i_*: {}_2(\pi_n(Y)) \to {}_2(\pi_n(Y))$ be the identity homomorphisms, and $p_{r*}: \pi_n(Y) \to (\pi_n(Y))_r$ the projection.

Taking $\alpha_*^k, \beta_*^k, \gamma_*^k, i_*, p_{r*}$ as a trace of (2), (3) or (4), we have the various cyclic reduced powers. Using these operations, our

⁵⁾ N. E. Steenrod: Products of cocycles and extensions of mappings, Ann. of Math., **48** (1947), and Reduced powers of cohomology classes, ibid., **56** (1952). St^r_r coincides with the Steenrod's operation $\mathfrak{S}^{r}_{(r-1)q-i}$ except the signature.

⁶⁾ $_{r}G$ denotes the subgroup of G which consists of all the elements of order r, and G_{r} is the factor group G/rG.

⁷⁾ For r=2, the similar operation was considered by N. Shimada—H. Uehara: Classification of mappings of an (n+2)-complex..., Nagoya Math. Jour., 4 (1952).

main theorems can be stated as follows:

Theorem 1 (the relative extension theorem)

Let Y be a complex with (1) and let $n \ge k+2$. If f, g are maps of $K^n \bigcup L$ into Y which coincide on L and possess extensions to $K^{n+1} \bigcup L$, then the difference of their secondary obstructions $z^{n+k+1}(f)$ $-z^{n+k+1}(g)$ is given by $\pm P_k(\lambda^n)$, where $\lambda^n = (f-g)^* \mathbf{1}^{(k)}$ and P_k is the following:

Theorem 2 (the homotopy classification theorem)

Let Y be a complex with (1) and $f_0, f_1: K^{n+1} \rightarrow Y$ be normal maps such that $f_0|K^n = f_1|K^n$ $(n \ge k+2)$. Then $f_0 \simeq f_1$ rel. L if and only if there exists a cohomology class $e^{n-1} \in H^{n-1}(K, L; \pi_n(Y))$ such that $d^{n+k}(f_0, f_1) = \pm P_k e^{n-1}$, where $d^{n+k}(f_0, f_1) \in H^{n+k}(K, L; \pi_{n+k}(Y))$ is the cohomology class of the separation cocycle for f_0 and f_1 and P_k is the homomorphism (5).

The proofs of Theorems 1 and 2 are performed by a method which is in a sense a generalization of that of Steenrod⁵: the complexes M^n in his paper are replaced here by the cell complexes $R_n^k(h)$.

§ 5. J. Adem¹²) recently obtained the various relations with respect to the iterated Steenrod squares St_2^i . We can prove some of these relations by using the cell complex $R_n^k(2)$ in Example 2. Among all, we have

 $St_2^2St_2^2 = St_2^3St_2^1$, $St_2^4St_2^1 + St_2^5 = St_2^2St_2^3$,

with coefficients in I_2 .

No. 1]

^{8) 1} denotes the same as in J. H. C. Whitehead: On the theory of obstructions, Ann. of Math., 54 (1951).

⁹⁾ This was obtained by many authors: J. H. C. Whitehead⁸⁾, S. Eilenberg-S. MacLane²⁾, and M. M. Postnikov (in Russian).

¹⁰⁾ This was obtained first by N. Shimada-H. Uehara⁷).

¹¹⁾ We can get also in this case the theorems 1 and 2 for n=k+1=4. The Pontrjagin square and Postnikov square are needed. cf. ¹)

¹²⁾ J. Adem: The iteration of the Steenrod Squares in algebraic topology, Proc. Nat. Acad. of Sci., U.S.A., **38** (1952).