# 37. On the Jordan-Hölder-Schreier Theorem 

By Tsuyoshi Fujiwara and Kentaro Murata<br>Department of Mathematics, Yamaguchi University<br>(Comm. by Z. Suetuna, m.J.A., April 13, 1953)

In this note we shall formulate the Jordan-Hölder-Schreier Theorem for groups in any lattice. This formulation is the extension of the usual Jordan-Hölder-Schreier Theorem for modular lattices, and of the Jordan-Hölder Theorem for composition series of lower semimodular lattices.

Let $L$ be a lattice. In the following we denote the elements of $L$ by small latters $a, b, x, y, m, n, \cdots$. By $m / n$ we mean the closed interval $\{x ; m \geqq x \geqq n, x \in L\}$, and by $m /$ the principal ideal generated by $m$ in $L$.

Definition 1. An element $a \in m / n$ is called $m / n$-modular if and only if

1) $x, y \in m / n, x \geqq a$ implies $(x \cap y) \cup a=x \cap(y \cup a)$ and
2) $x, y \in m / n, x \geqq y$ implies $(x \cap a) \cup y=x \cap(a \cup y)$.

Remark. Putting $m /$-modular in place of $m / n$-modular in this definition, we can argue similarly in the following arguments.

Theorem 1. If $a, b \in m / n$ and $a$ is $m / n$-modular, then the correspondences $x \rightarrow x \cap b$ and $y \rightarrow y \cup a$ are inverse isomorphisms between $a \cup b / a$ and $b / a \frown b$.

Proof. This theorem is immediate from the above definition.
Theorem 2. If $a$ is $m / n$-modular and $b \in m / n$, then $a \cap b$ is $b / n$ modular.

Proof. (i) If $x, y \in b / n$ and $x \geqq a \cap b$ then

$$
\begin{aligned}
& (x \cap y) \cup(a \cap b) \\
= & {[(x \cap y) \cup a] \cap b } \\
= & \{[(a \cup x) \cap b \cap y] \cup a\} \cap b \\
= & (a \cup x) \cap[(b \cap y) \cup a] \cap b \\
\geqq & x \cap(y \cup a) \cap b \\
= & x \cap[y \cup(a \cap b)] \\
\geqq & (x \cap y) \cup(a \cap b) .
\end{aligned}
$$

$$
=\{[(a \cup x) \cap b \cap y] \cup a\} \frown b \quad \text { (applying Theorem 1) }
$$

Hence we have

$$
(x \cap y) \cup(a \cap b)=x \frown[y \cup(a \cap b)]
$$

(ii) If $x, y \in b / n$ and $x \geqq y$, then we have

$$
\begin{aligned}
& x \cap[(a \cap b) \cup y] \\
= & x \cap[b \cap(a \cup y)] \\
= & x \cap(a \cup y) \\
= & (x \cap a) \cup y \\
= & {[x \cap(a \cap b)] \cup y . }
\end{aligned}
$$

This complete the proof.
Theorem 3. Let $n \leqq a \leqq b \leqq m$. If $a$ is $m / n$-modular and $b m / a$ modular then $b$ is $m / n$-modular.

Proof. (i) If $x, y \in m / n$ and $x \geqq b$, then we have

$$
\begin{aligned}
& x \cap(y \cup b) \\
= & {[(a \cup y) \cap x \cap(y \smile b)] \cup b } \\
= & {[(a \smile y) \cap x] \cup b } \\
= & {[a \smile(y \cap x)] \cup b } \\
= & (x \cap y) \cup b .
\end{aligned}
$$

(ii) If $x, y \in m / n$ and $x \geq y$, then we have

$$
\begin{aligned}
& x \cap(b \smile y) \\
= & (x \cup a) \cap(b \smile y \cup a) \cap x \\
= & \{[(x \cup a) \cap b] \smile(y \cup a)\} \cap x \\
= & {[a \cup(x \cap b) \cup(y \cup a)] \frown x } \\
= & {[a \cup(x \cap b) \smile y] \cap x } \\
= & (x \cap b) \cup y .
\end{aligned}
$$

(applying Theorem 1)
This complete the proof.
Theorem 4. Let $a$ be $m / n$-modular and $b \in m / n$.

1) If $x \in a \cup b / a$ and $a \cup b / n$-modular then $x \cap b$ is $b / n$-modular.
2) If $y \in b / a \cap b$ and $b / n$-modular then $y \cup a$ is $a \cup b / n$-modular.

Proof. This theorem is immediate from the above three theorems.

Theorem 5. If $a, b$ are $m / n$-modular, then $a \cup b$ is $m / n$-modular.
Proof. (i) If $x, y \in m / b$ and $x \geqq a \cup b$, then we have

$$
\begin{aligned}
& (x \cap y) \cup(a \cup b) \\
= & {[x \cap(y \cup a)] \cup b } \\
= & x \cap[y \cup(a \cup b) .
\end{aligned}
$$

(ii) If $x, y \in m / b$ and $x \geqq y$, then

$$
\begin{aligned}
& {[x \cap(a \cup b)] \cup y } \\
\geqq & (x \cap a) \cup y \\
= & x \cap(a \cup y) \\
= & x \cap[(a \cup b) \cup y] \\
\geqq & {[x \cap(a \cup b)] \cup y . }
\end{aligned}
$$

i. e. $[x \cap(a \cup b)] \cup y=x \cap[(a \cup b) \cup y]$.

Hence $a \cup b$ is $m / b$-modular. Using Theorem 3, we conclude the $m / n$ modularity of $a \cup b$.

Definition 2. Let $m=a_{0}>a_{1}>\cdots>a_{r}=n \geqq n_{0}$ be a chain such that $a_{i}$ is $a_{i-1} / n$,-modular $(i=1, \cdots, r)$. We call such a chain a $m / n$ modular chain on $n_{0}$.

Theorem 6. (Schreier's Theorem). Let
and

$$
\begin{aligned}
& m=a_{0}>a_{1}>\cdots>a_{r}=n \geqq n_{0} \\
& m=b_{0}>b_{1}>\cdots>b_{s}=n \geqq n_{0}
\end{aligned}
$$

be any two finite $m / n$-modular chains on $n_{\jmath}$, then these modular chains can be refined by interpolation of terms $a_{i, j}=a_{i+1} \cup\left(a_{i} \cap b_{j}\right)$ and $b_{i, j}=$
$b_{j+1} \smile\left(a_{i} \cap b_{j}\right)$ so that corresponding intervals $a_{i, j} / a_{i, j+1}$ and $b_{i, j} / b_{i+1, j}$ are projective and isomorphic.

Proof. (i) Proof of refinement:
$a_{i+1}$ is $a_{i} / n_{0}$-modular. Hence by Theorem 1 we have

$$
\begin{equation*}
a_{i, j} / a_{i+1} \cong a_{i} \cap b_{j} / a_{i+1} \cap b_{j} \tag{1}
\end{equation*}
$$

Moreover, using Theorem 2 we have that $a_{i+1} \cap b_{j}$ is $a_{i} \cap b_{j} / n_{0}$-modular.
Similarly $a_{i} \cap b_{j+1}$ is $a_{i} \cap b_{j} / n_{0}$-modular. Hence applying Theorem 5, we have that:

$$
\begin{equation*}
\left(a_{i+1} \cap b_{j}\right) \cup\left(a_{i} \cap b_{j+1}\right) \text { is } a_{i} \cap b_{j} / n_{0} \text {-modular. } \tag{2}
\end{equation*}
$$

Since

$$
\begin{equation*}
a_{i+1} \cup\left(a_{i+1} \cap b_{j}\right) \cup\left(a_{i} \cap b_{j+1}\right)=a_{i+1} \smile\left(a_{i} \cap b_{j+1}\right)=a_{i, j+1}, \tag{3}
\end{equation*}
$$

applying (1), (2) and Theorem 4, we have that $a_{i, j+1}$ is $a_{i, j} / n_{0}$-modular. Similarly $b_{i+1, j}$ is $b_{i, j} / n_{0}$-modular.
(ii) Proof of projectivity and isomorphism:

Applying (1), (3) and Theorem 1, we get

$$
a_{i, j} / a_{i, j+1} \cong a_{i} \cap b_{j} /\left(a_{i} \cap b_{j+1}\right) \cup\left(a_{i+1} \cap b_{j}\right)
$$

Similarly

$$
b_{i, j} / b_{i+1, j} \cong a_{i} \cap b_{j} /\left(a_{i} \cap b_{j+1}\right) \cup\left(a_{i+1} \cap b_{j}\right)
$$

Hence

$$
a_{i, j} / a_{i, j+1} \text { and } b_{i, j} / b_{i+1, j} \text { are projective and isomorphic. }
$$

This complete the proof.
Remark 1. If there exists an unrefined $m / n$-modular chain on $n_{0}$, then we get the Jordan-Hölder Theorem.

Remark 2. Let $L$ be a modular lattice. Then Theorem 6 is the usual Schreier's Theorem for $L$.

Remark 3. Let $L$ be a lattice with the following condition: If $x \cup y$ covers $x$ and $y$, then $x \cap y$ is covered by $x$ and $y$. Then we get the Jordan-Hölder Theorem for any finite dimensional interval $m / n$.

Because, if $x, y \in m / n$ and $x$ covers $y$ then $y$ is $x / n$-modular, therefore, this is immediate by Theorem 6.

Hence, if $L$ is lower semi-modular, then the Jordan-Hölder Theorem for $L$ is a special case of this remark.

