99. On the Classification of Symmetric Fuchsian Groups of Genus Zero

By Tadashi Kuroda

Mathematical Institute, Nagoya University, Nagoya (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1953)

1. Let $\{\alpha_i\}$ (i=0,1,2,...) be a finite or an enumerable number of circular open arcs in the unit circle |z| < 1 which are orthogonal to the circumference |z|=1 and disjoint each others in |z|<1 and let D_0 be the simply connected domain in |z|<1 bounded by $\{\alpha_i\}$ (i=0,1,2,...) and the closed set E on |z|=1. If \widetilde{D}_0 is the reflection of D_0 with respect to an arc of $\{\alpha_i\}$, say α_0 , then the domain D_0 $\neg \alpha_0 \neg \widetilde{D}_0$ is a fundamental domain of a symmetric Fuchsian or fuchsoid group \mathfrak{G} without any elliptic transformation and of genus zero. Conversely, such a group has a fundamental domain as stated above.

We denote by $\{\tilde{\alpha}_i\}$ (i=0,1,2,...) the boundary arcs of D_0 corresponding to $\{\alpha_i\}$ (i=0,1,2,...) by G. $\tilde{\alpha}_0$ is identical to α_0 . Identifying the equivalent points on α_i and $\tilde{\alpha}_i$ (i=1,2,...), we get an open Riemann surface \hat{D} . This surface \hat{D} can be decomposed by a relative boundary C into two parts D and \tilde{D} , each one of which is the image of the other by an indirectly conformal mapping. And $D \cup C$ (or $\tilde{D} \cup C$) is comformally equivalent to $D_0 \cup \bigcup_{i=0}^{\infty} \alpha_i$ (or $\tilde{D}_0 \cup \bigcup_{i=0}^{\infty} \tilde{\alpha}_i$).

2. We state here some notations. Let *HB* or *HD* be the class of single-valued harmonic functions bounded or Dirichlet bounded in a region. If there exists no non-constant function of *HB* (or *HD*) in D_0 which equals to zero on $\Gamma = \bigcup_{i=0}^{\infty} \alpha_i$, then we may say that D_0 belongs to the class SO_{HB} (or SO_{HD}). If any function of *HB* in D_0 , whose normal derivative vanishes at every point on Γ , reduces to a constant, we say that D_0 belongs to the class NO_{HB} .

Further we denote by O_{a} the class of Riemann surfaces with null boundary and by O_{AB} (or O_{AD}) the class of Riemann surfaces on each of which there exists no non-constant single-valued bounded (or Dirichlet bounded) analytic function.

3. Ullemar (=Uskila⁷⁾⁸⁾) classified the symmetric Fuchsian or fuchsoid groups (5) without any elliptic transformation and of genus zero according to the existence of a certain kind of automorphic functions for (5). More precisely, (5) belongs to positive type or null type with respect to bounded (or Dirichlet bounded) automorphic functions according to whether in |z| < 1 there exists a nonconstant single-valued bounded (or Dirichlet bounded) automorphic function or not.

It is obvious that \mathfrak{G} belongs to null type with respect to bounded (or Dirichlet bounded) automorphic functions if and only if $\hat{D} \in O_{AB}$ (or $\in O_{AD}$).

On the other hand, Ohtsuka⁴⁾ proved that $\hat{D} \in O_G$ if and only if every single-valued non-negative subharmonic function on \hat{D} reduces to a constant. Hence we may say that the group G belongs to positive type or null type with respect to non-negative subharmonic automorphic functions according to whether $\hat{D} \notin O_G$ or $\hat{D} \in O_G$.

The following is known (Ullemar⁷⁾⁸⁾, Kuroda²⁾).

Proposition 1.

 $\begin{aligned} \hat{D} \in O_{G} & \text{if and only if } D_{0} \in NO_{HB} \, . \\ \hat{D} \in O_{AB} & \text{if and only if } D_{0} \in SO_{HB} \, . \\ \hat{D} \in O_{AD} & \text{if and only if } D_{0} \in SO_{HD} \, . \end{aligned}$

Mapping D_0 in the unit circle |w| < 1, then we have the closed set *e* lying on |w|=1 and corresponding to *E*. Then we can obtain the following without any difficulty. (Cf. Kametani¹⁾, Sario⁶⁾, Kuroda²⁾.)

Proposition 2.

 $\hat{D} \in O_{G}$ if and only if the set e is of logarithmic capacity zero.

 $\hat{D} \in O_{AB}$ if and only if the set e is of measure zero.

 $\hat{D} \in O_{AD}$ if and only if the span of the complementary domain of the set e is zero.

4. Here we shall give a sufficient condition for $\hat{D} \in O_G$. Let θ_r be the part of the circumference |z|=r(<1) contained in D_0 . We denote by l(r) the length of θ_r . Then we have

Theorem 1. If the integral $\int_{-\infty}^{1} \frac{dr}{l(r)}$

diverges, then $\hat{D} \in O_{G}$.

Proof. By Proposition 1, it is sufficient to prove that $D_0 \in NO_{HB}$. Let u be a function of HB in D_0 whose normal derivative $\frac{\partial u}{\partial \nu}$ vanishes at every point on Γ . If we denote by D(r) the Dirichlet integral of u taken over the subdomain D_r of D_0 which is the common part of D_0 and |z| < r, then it is easy to see that (1) $D(r) = \int_{\theta_r} u \frac{\partial u}{\partial r} r \, d\theta$, $z = re^{i\theta}$,

for $\frac{\partial u}{\partial \nu}$ equals to zero on *I*. By the Schwarz inequality, we obtain

$$D^{2}(r) \leq M^{2} \int_{\theta_{r}} r \, d\theta \int_{\theta_{r}} \left(\frac{\partial u}{\partial r}\right)^{2} r \, d\theta \,,$$

provided that |u| < M. Since

$$l(r) = \int_{\theta_r} r \, d\theta$$
 and $\int_{\theta_r} \left(\frac{\theta u}{\theta r}\right)^2 r \, d\theta \leq \frac{dD(r)}{dr}$,

we get easily

$$\int_{r_0}^r \frac{dr}{l(r)} \leq \frac{1}{D(r_0)} - \frac{1}{D(r)} \leq \frac{1}{D(r_0)} \cdot$$

Hence the function u must be a constant, if the integral

$$\frac{dr}{l(r)}$$

diverges. Thus, under the condition of our theorem, $D_0 \in NO_{RB}$. Therefore, we arrive at the required.

5. From F.-M. Riesz' theorem and Proposition 2, we can easily see the following.

Theorem 2. Put $\theta(r) = \int_{\theta_r} d\theta$. Then $\hat{D} \in O_{AB}$ if and only if $\lim_{r \to 1} \theta(r) = 0$.

6. Now we shall give a sufficient condition in order that $\hat{D} \in O_{AD}$. θ_r is constructed by a finite number of circular arcs θ_r^i $(i=1,\ldots,n_r)$ which are disjoint each others. We denote by $\lambda_i(r)$ the length of θ_r^i and put

$$\lambda(r) = \operatorname{Max} \lambda_i(r) \, .$$

Then we can prove the following.

Theorem 3. If the integral

$$\int \frac{dr}{\lambda(r)}$$

diverges, then $\hat{D} \in O_{AB}$.

Proof. Let u be a harmonic function which equals to zero on Γ . If D(r) is the Dirichlet integral of u taken over D_r , the formula (1) holds good again. By Wirtinger's inequality, we get

(2)
$$\int_{\theta_r^4} u^2 r \, d\theta \leq \frac{(\lambda_i(r))^2}{\pi^2} \int_{\theta_r^4} \frac{1}{r^2} \left(\frac{\partial u}{\partial \theta}\right)^2 r \, d\theta$$
$$\leq \frac{(\lambda(r))^2}{\pi^2} \int_{\theta_r^4} \frac{1}{r^2} \left(\frac{\partial u}{\partial \theta}\right)^2 r \, d\theta.$$

On the other hand, using the Schwartz inequality, we obtain

$$(3) \qquad \left(\int_{\theta_r^i} u \frac{\partial u}{\partial r} r \, d\theta\right)^2 \leq \int_{\theta_r^i} u^2 r \, d\theta \int_{\theta_r^i} \left(\frac{\partial u}{\partial r}\right)^2 r \, d\theta \,,$$

whence, by (2) and (3), it follows that

$$\begin{split} \int_{\theta_{r}^{4}} u \frac{\partial u}{\partial r} r \, d\theta &\leq \frac{\lambda(r)}{\pi} \sqrt{\int_{\theta_{r}^{4}} \left(\frac{\partial u}{\partial r}\right)^{2} r \, d\theta \int_{\theta_{r}^{4}} \frac{1}{r^{2}} \left(\frac{\partial u}{\partial \theta}\right)^{2} r \, d\theta} \\ &\leq \frac{\lambda(r)}{2\pi} \int_{\theta_{r}^{4}} \left[\left(\frac{\partial u}{\partial r}\right)^{2} + \frac{1}{r^{2}} \left(\frac{\partial u}{\partial \theta}\right)^{2} \right] r \, d\theta \, . \end{split}$$

No. 8]

T. KURODA

[Vol. 29,

Summing up these inequalities for $i=1,\ldots,n_r$, we have

$$D(r) \leq \frac{\lambda(r)}{2\pi} \frac{dD(r)}{dr}$$

or

$$\frac{dr}{\lambda(r)} \leq \frac{1}{2\pi} \frac{dD(r)}{D(r)}$$

By integrating both sides, we get

$$\int_{r_0}^r \frac{dr}{\lambda(r)} \leq \frac{1}{2\pi} \log \frac{D(r)}{D(r_0)}.$$

Therefore, if the integral

$$\int^1 \frac{dr}{\lambda(r)}$$

diverges, then $\lim_{r \to 1} D(r) = \infty$ or $D(r_0) = 0$. Thus, under the condition of our theorem, the harmonic function which equals to zero on Γ , has not a finite Dirichlet integral or reduces to a constant, and hence D_0 has to belong to SO_{HD} . From Proposition 1, we get the assertion.

7. Remark. Theorems 1 and 3 are similar to the results obtained by Laasonen³⁾ and Sario⁵⁾ respectively. They considered the case when D_0 is a fundamental domain, containing the origin of the unit circle, of any Fuchsian or fuchsoid group.

References

1) S. Kametani: On Hausdorff's measure and generalized capacities with some of their applications to the theory of functions, Jap. Journ. Math., **19**, 217-257 (1944-'48).

2) T. Kuroda: A property of some open Riemann surfaces and its application, Nagoya Math. Journ., 6, 79-84 (1953).

3) P. Laasonen: Zum Typenproblem der Riemannschen Flächen, Ann. Acad. Sci. Fenn., A. I. 11 (1942).

4) M. Ohtsuka: Dirichlet problems on Riemann surfaces and conformal mappings, Nagoya Math. Journ., **3**, 91-137 (1951).

5) L. Sario: Über Riemannsche Flächen mit hebbarem Rand, Ann. Acad. Sci. Fenn., A. I. 50 (1948).

6) L. Sario: An extremal method on arbitrary Riemann surfaces, Trans. Amer. Math. Soc., 73, 459-470 (1952).

7) L. Uskila: Über der Existenz der beschränkten automorphen Funktionen, Arkiv för Mat., 1, 1-11 (1949).

8) L. Ullemar: Über die Existenz der automorphen Funktionen mit beschränkten Dirichletintegral, Arkiv för Mat., 2, 87-97 (1952).