98. Positive Linear Functionals on Self-Adjoint B-Algebras

By Shin-ichi Matsushita
Mathematical Institute, Osaka City University
(Comm. by K. Kunugi, m.J.A., Oct. 12, 1953)

1. A self-adjoint Banach (B-) algebra (or abbrev. B_{*}-algebra) A is a B-algebra over the complex scalar field K which admits such a^{*}-operation as is a conjugate linear, involutory, anti-automorphism of A, i.e. $(\alpha a+b)^{*}=\bar{\alpha} a^{*}+b^{*}, a^{* *}=a^{*}$, and $(a b)^{*}=b^{*} a^{*}$ for $a, b \in A, \alpha \in K$.

If a B-algebra A has an approximate identity $\left\{e^{\lambda}\right\}, a e^{\lambda} \longrightarrow a$ and $e^{\lambda} a \longrightarrow a$ (strongly), we call A semi-unitary, and if A has identity e (of norm 1), unitary.

The collection of all hermitian elements, $a^{*}=a$, of A is denoted by $H(A)$ and called the hermitian kernel of $A ; H(A)$ forms a normed sub-space of A, and if A is commutative, a sub- B-algebra which is necessarily real.
$A B_{*}$-algebra possessing an additional condition $\left\|a^{*} a\right\|=\|a\| \cdot$ $\left\|a^{*}\right\|$ is $a B^{*}$-algebra in the sense of R.V. Kadison ${ }^{1)}$.
A commutative real B-algebra is always regarded as $a B_{*}$ algebra, over the reals, with $A=H(A)$.
2. For a real commutative unitary B-algebra, i.e. unitary A with $A=H(A)$, the following assertion is a well-known fact:

The set Π of real linear functionals on A which is non-negative on squares and 1 on e is a w^{*}-compact, ${ }^{2)}$ convex set.

If II is non-void, each of its extreme points is a multiplicative linear functional, so that $f^{-1}(0)$ is a maximal ideal of A for every extreme f of Π. ${ }^{3)}$

In this note, we intend to pursue the relations between extreme points of Π and maximal ideals in the case of non-commutative B_{*}-algebras A_{*}.

We begin with some notations:
$\Gamma(\cdot)=$ the dual space of a normed vector space (.). $\Xi\left(A_{*}\right)=$ the sub-space of $\Gamma\left(A_{*}\right)$, over the reals, whose elements satisfy $f\left(a^{*}\right)=\overline{f(a)}$.
$\hat{\Pi}\left(A_{*}\right)=$ the convex subset of $\Xi\left(A_{*}\right)$, such that $f\left(a^{*} a\right) \geqq 0$.
$\Phi\left(A_{*}\right)=$ the set of all multiplicative linear functionals on A_{*};

[^0]$\hat{\Phi}\left(A_{*}\right)=\Phi\left(A_{*}\right) \cap \Xi\left(A_{*}\right)$, which is clearly $<\hat{\Pi}\left(A_{*}\right)$.
Proposition 1. For any $f \in I\left(A_{*}\right)$, the set ' $\Im_{f}, \Im_{\prime}^{\prime}$, or \Im_{f},
\[

$$
\begin{aligned}
\mathfrak{I}_{f} & =\left\{a ; f(x a)=0 \text { for every } x \text { of } A_{*}\right\}, \\
\mathscr{J}_{f}^{\prime} & =\left\{a ; f(a x)=0 \text { for every } x \text { of } A_{*}\right\}, \\
\mathfrak{J}_{f} & =\left\{a ; f(x a y)=0 \text { for every } x, y \text { of } A_{*}\right\},
\end{aligned}
$$
\]

forms a closed left, right, or two-sided ideal of A_{*} respectively; if A_{*} is semi-unitary, $f(a)=0$ for $a \in \mathfrak{Y}_{f}, \Im_{f}^{\prime}$, or \Im_{f}.

Proposition 2. For any $f \in \widehat{\Pi}\left(A_{*}\right)$, the quotient B-space $A_{*} /{ }_{\prime} \Im_{f}$ (or $A_{*} / \mathfrak{F}_{f}^{\prime}$) forms a pre-Hilbert space with the inner product
(2.1) $\quad\left(X_{a}, X_{b}\right)_{f}=f\left(b^{*} a\right) \quad\left(o r=f\left(a b^{*}\right)\right)$,
where X_{a} is a residue class containig a; the completion of $A_{*} / \mathcal{Y}^{\prime}$ with respect to the norm $\left\|X_{a}\right\|=\left(X_{a}, X_{a}\right)^{1 / 2}$ is a Hilbert algebra.

The Hilbert space, completed from $A_{*} /^{\prime} \Im_{f}\left(\right.$ or $A_{*}\left(\Im_{f}^{\prime}\right)$, is denoted by ${ }^{\prime}{ }^{\circ}{ }_{\rho}$ (or resp. $\mathfrak{W}_{f}^{\prime}$).

Proposition 3. We have $\Phi\left(A_{*}\right)=\widehat{\Phi}\left(A_{*}\right)$, and for any $\varphi \in \Phi\left(A_{*}\right)$, the set $\mathfrak{J}_{\varphi}=\varphi^{-1}(0)$ forms a maximal two-sided regular ideal such that $A_{*} / \tilde{\Im}_{\varphi} \cong K$.

For the proof of Prop. 2, generalized Cauchy-Schwarz's lemma, $\left|f\left(a b^{*}\right)\right|^{2}=\left|f^{(}\left(b a^{*}\right)\right|^{2} \leqq f\left(a a^{*}\right) f\left(b b^{*}\right)$, is usefull.
3. Next, we shall define two manners of product in $H\left(A_{*}\right)$; 1) Jordan product

$$
\begin{equation*}
a \circ b=\frac{1}{2}(a b+b a), \tag{3.1}
\end{equation*}
$$

which is always commutative, distributive, but non-associative, and $a \circ a=\alpha^{2}$.
2) Special Poisson's product

$$
\begin{equation*}
[a, b]=\frac{1}{2 i}(a b-b a) \tag{3.2}
\end{equation*}
$$

which is skew-symmetric, distributive, and satisfies the Jacobi's equality. The set of all $[a, b], a, b \in H\left(A_{*}\right)$ is denoted by $W\left(A_{*}\right)$, which is contained in $H\left(A_{*}\right)$.

If A_{*} is commutative, $a \circ b=a b=b a$ and $W\left(A_{*}\right) \equiv(0)$.
$\tilde{\Pi}\left(H\left(A_{*}\right)\right)=$ the convex subset of $\Gamma\left(H\left(A_{*}\right)\right)$ consisting of all such functionals;
(3. 3) $\quad 2|f([a, b])| \leqq f\left(a^{2}\right)+f\left(b^{2}\right), a, b \in H\left(A_{*}\right)$.
$\tilde{\mathscr{\Phi}}\left(H\left(A_{*}\right)\right)=$ all of multiplicative linear functionals on $H\left(A_{*}\right)$ with respect to the product (3.1), vanishing on $W\left(A_{*}\right)$.

Theorem 1. $\Xi\left(A_{*}\right) \cong \Gamma\left(H\left(A_{*}\right)\right), \quad \hat{\Pi}\left(A_{*}\right) \cong \widetilde{\Pi}\left(H\left(A_{*}\right)\right)$ and $\Phi\left(A_{*}\right) \cong$ $\widetilde{\Phi}\left(H\left(A_{*}\right)\right)$, where the sign " \cong " means a topological isomorphism in which the restriction on $H\left(A_{*}\right)$ of each element in the left coincides with the corresponding one in the right.

In virtue of this Theorem, the Krein-Milman's "extreme points" theorem is also valid for a bounded, regularly convex set
in $\Xi\left(A_{*}\right)$ even in the case of complex algebra; denoting the unit sphere of $\Gamma\left(A_{*}\right)$ (or $\Gamma\left(H\left(A_{*}\right)\right)$) by E (or resp. E_{0}), $E \cap \Xi$ is w^{*} compact, which is a modified formula of Kakutani-Dieudonne's theorem.
4. Now, $\tilde{\Pi}\left(H\left(A_{*}\right)\right)$ is w^{*}-closed in $\Gamma\left(H\left(A_{*}\right)\right)$, so that $\tilde{E}_{0}=E_{0} \cap$ $\tilde{\Pi}\left(H\left(A_{*}\right)\right)$ is w^{*}-compact and regularly convex, then it has the set $S\left(\widetilde{E}_{0}\right)$ of extreme points whose convex hull is dense in \widetilde{E}_{0}; if ${ }^{\prime} \mathfrak{J}_{f}=\prime \mathfrak{J}_{g}$, we write $\hat{f} \sim \hat{g}$, calling them equivalent ${ }^{4)} \hat{f} \sim \hat{g}$ yields $\hat{f} \sim(\alpha \hat{f}+\beta \hat{g})$, for $\alpha, \beta \geq 0$ with $\alpha+\beta=1$.

Definition. If $\hat{f} \in \widetilde{E}_{0}$ is equivalent to no linear convex combination of \hat{g} and \hat{h}, each of which is in E_{0} and not equivalent to \hat{f}, then \hat{f} is said to be weakly extreme (w. extr.) in \tilde{E}_{0}.

From the definition, it follows immediately :
i) If \hat{f} is w. extr. in \widetilde{E}_{0} and if $\hat{f} \sim \hat{g}$, then \hat{g} is also w. extr. in $\widetilde{E_{0}}$,
ii) $\quad \mathfrak{I}_{f} \cap^{\prime} \mathfrak{Y}_{g}<\mathfrak{J}_{a f+\beta}$ for $\alpha, \beta \geqq 0, \alpha+\beta=1$.

It is not sure whether an extreme point of \tilde{E}_{0} is w. extr. or not in general cases. But we can settle an important result :

Theorem 2. For a semi-unitary B_{*}-algebra, a necessary and sufficient condition that ' $\mathfrak{F}_{\text {' }}$ would be maximal is that \hat{f} is w. extr. in \widetilde{E}_{0} for $\|f\| \leqq 1$.

To prove this, we make use of the Hilbert space completed from A_{*} / \Im_{f} and orthogonal decomposition in it.

The above assertions are also valid for $\mathfrak{J}_{f}^{\prime}$ or \mathfrak{J}_{f} at all. We shall define another notion;

Definition. If i) ' $\mathfrak{I}_{f}, \mathfrak{J}_{f}^{\prime}$, or \mathfrak{J}_{f} is a regular ideal and ii) $f(j)$ $=1$ for an identity j modulo the corresponding ideal, then f (or \hat{f}) is called left, right, or two-sided regular; but we need essentially only two regularities of f, one-sided and two-sided, since if f is left regular having an identity j modulo ' \varliminf_{f}, then f is also right regular, having an identity j^{*} modulo $\mathfrak{\Im}_{f}^{\prime}=\left({ }_{f}\right)^{\prime}$.

The set intersection of \widetilde{E}_{0} and of all one-sided (two-sided) regular functionals is denoted by \hat{E}_{0} (resp. $\hat{\hat{E}}_{0}$), which is evidently convex and w^{*}-closed.

If A_{*} is unitary, it holds $\widehat{E}_{0}=\hat{\hat{E}}_{0}$, each of whose element is called a "state" in the case of C^{*}-algebra."

Theorem 3. For \hat{f} in $\widehat{E}_{0}\left(\right.$ or $\left.\hat{\mathbb{E}}_{0}\right)$, if ' $\mathfrak{Y}_{f}\left(\right.$ resp. $\left.\mathfrak{F}_{f}\right)$ is not maximal, then there exists a segment in \hat{E}_{0} (resp. $\hat{\hat{E}}_{0}$) just in which \hat{f} is an inner point.

[^1]Corollary 3. 1. For an extreme \hat{f} in $\widehat{E}_{0}\left(\right.$ or $\left.\hat{\hat{E}}_{0}\right)$, each of ' \mathfrak{J}_{f} and \Im_{f}^{\prime} (or resp. \Im_{f}) is maximal and regular.

By means of this Corollary and Thr. 2, we have
Corollary 3. 2. Every extreme point of \hat{E}_{0} (or, if the algebra is unitary, of \widetilde{E}_{0}) is w. extr. in it.

Theorem 4. Every non-null Φ in $\Phi\left(A_{*}\right)$ (i.e. multiplicative) is an extreme point of $\hat{E_{0}}$ and of $\hat{\hat{E}_{0}}$.
In Thr. 3~Thr. 4, A_{*} is assumed to be semi-unitary.
Theorem 5. If A_{*} is commutative and unitary, it holds extr. $\quad \hat{E}_{0}=$ extr. $\quad \hat{\hat{E}}_{0}=S\left(\widetilde{E}_{0}\right)=\Phi^{0}\left(A_{*}\right)$, where Φ^{\prime} means the collection of non-zero elements of Φ.
5. Assume that A_{*} is the group-algebra on a LC group G, then $\widetilde{E}_{0}=\hat{E}_{0}$ and \widetilde{E}_{0} is one-to-one corresponding to the collection of all continuous positive definite (c.p.d.) function on G with norms less than 1 , by the relation

$$
f(a)=\int_{G} \overline{\xi(x)} a(x) d x, \quad \text { for } \quad a \in A_{*}, \quad f \in E_{0}
$$

and $\xi(\cdot)$ is c.p.d. on G with $\|\xi\|=\sup _{x \in G}|\xi(x)| \leqq 1$.
In the case, every extreme \hat{f}_{0} corresponds to an elementary c.p.d. function and all w. extr. points f consists of a segment combining each \hat{f}_{0} and 0 , i.e. $\hat{f}=\lambda \hat{f}_{0}$ for $0<\lambda \leqq 1 .{ }^{\text {e }}$

[^0]: 1) A representation theory for commutative topological algebra, Memoirs of Amer. Math. Soc., 7 (1951).
 2) With respect to the weak topology as functionals.
 3) R.V. Kadison, loc. cit., pp. 23-24.
[^1]: 4) \hat{f} is a corresponding element of $\widetilde{\Pi}(H(A))$ to f of $\hat{\mathrm{I}}\left(A_{*}\right)$ with respect to the isomorphism in Thr. 1; $f=\hat{f}$ on $H\left(A_{*}\right)$.
 5) See, I. E. Segal, Two-sided ideals in operator algebras, Ann. Math., 50 (1949).
