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97. Note on Dirichlet Series. X.
Remark on S. Mandelbrojt’s Theorem

By Chuji TANAKA
Mathematical Institute, Waseda University, Tokyo
(Comm. by Z. SUETUNA, M.J.A., Oct. 12, 1953)

(1) Introduction. Let us put
(1. 1) F(s)=ﬁ1aq, eXD(—A4s) (s=o+it, 0K k<l du=>+ ).

Let F'(s) be uniformly convergent in the whole plane. Then F'(s)
defines the integral function, and for any given oy Sup | F(o+1t) | has
the finite value M(s). After J. Ritt® (pp. 18*19), We can define the
order and type of F'(s) as follows:

Definition 1. The order o of (1. 1) is defined by

p = lim 1/(-o). log* log* M(s),

>~ 0

where log* = Max (0, log z). If 0p<+ oo, then the type k of (1.1)
s defined by

k= '1;1_5& 1/exp ((=o)p). log* M(o).

Definition 1I. Let D(r; C) be the curved strip which is gener-
ated by circles with radii v, and having ils centres on the analytic
curve C, which extends to R(s)=—oco. Then the order p(D) in D is
defined by

p (D) = lim 1/(—o). log* log* M(s; D),
where M(c; D)= Maw IF(s)] If 0<p(D) <+ o, then the type k(D)
wn D is defined by
k(D) = lim 1/exp ((~o)p(D)). log* M(c; D).

S. Mandelbrojt has proved the following.

Theorem (S. Mandelbrojt® p. 19). Let (1. 1) with 11m (z,,+1—z,,)—
h>0, l1m n/A=8(X 1/h) be simply (necessarily absolutely) convergent
in the 'whole plane. Then, in any strip: |JE)—t|Sw(8+¢€) (¢
arbitrary but fixed, €: any given positive constant), (1.1) has the
same order as in the whole plane.

In this note, we shall generalize it as follows:

Theorem. Let (1.1) with hm nrr—= )=k >0, Tim n/2,=8 (L
1/k) be simply (necessarily absolutely) convergent in tlw whole plane.
Then, in any curved strip D(w(8+€); C) (€: any given positive con-
stant), (1. 1) has the same order as in the whole plane.

If furthermore 8=0, then in D(e;C), (1.1) has the same order
and type as in the whole plane.
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Remark. G. Pélya® (p. 627) has proved the second part of
this theorem in the case of Taylor series by the very complicated
method.

(2) Lemma. We shall establish next lemma, which is a gener-
alization of J. J. Gergen-S. Mandelbrojt’s theorem®, ( 1) pp. 18-14,
3) pp. 4-6).

Lemma. Under the same conditions as in the theorem, we have

Sup | F'(s)| < A4 - Max | F(u)]

R =Rispd tu—8;1=7(0+8)
where (i) sy, s1: two arbitrary points, but R (s))=R(s)
— (88 log (€°/h8)+2¢),
(i) A: constant depending upon only €, & and {1.}.
Proof. By ”1:11—130 Nfd,=8<+ o0, % 1/2%2 converges, so that,
putting
@. 1) gu(d) = I (1-218)
(2. 1) is an integral function. yi'flﬂence, by F. Carlson-A. Ostrowski’s
theorem® (p. 267), for any given ¢(C>0), we have
(2.2) |pu(2)| < exp (w(8+€)[z]) for [z|>> R(e).
Setting q),,(z):ics’"/u!. 2’, by Cauchy’s theorem and (2.2), we
get easily i
el < 11, exp (w(8+¢€)r) r=|z].
Since the right-hand side takes its minimum at r=y/w(5+¢), for
sufficiently large v, we have
leg? | <{m(8+2€)}" .
Hence, there exists a constant K (¢) such that
(2.3) |c‘“’|<K1(e) {n(8+2¢)} (»=1,2,...).
Putting 0,(z) = 2‘, 24, by (2. 8), @.(?) is convergent for |z|>#8 .
On account of H Cramer-A Ostrowski’s theorem® (pp. 49-52), we
have

U n(A) €Xp (=4, 8) = vi_]lav @a(A) exp(—4,8)
= 1/2i. 9§ F(s—u) @, (u) du,

lu|=m(5+3¢)

go that, by (2.8)
,an Pn (27;) + €Xp (—271 S)‘
< Max |F(u)|. 1/2x. 9§ {iﬂ [e§ur*? | } |dul

ls—u|=x(5+38)
\u|=ae(8+38)

< Max | F(u)| K(e). Z{(5+2=)/(8+3€)}“

|8—u)= 7 (5+31

Therefore, replacing ¢ by ¢/38, we can put
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2.4 |@. 2u(2,) exp (—2.8)| < C Max |F(u)|,

ls~ul=m(8+8)

where C: a constant depending upon only & and §.
On the other hand, by F. Carlson-A. Ostrowski’s theorem?® (p.
267) for any given e (> 0), and sufficiently large 4,, we get
11/@. (2)] < exp {(85 log (¢°/h8) + €) A} .
Accordingly, there exists a constant K,(¢) such that
(2.5) [1/n (2:) | < K (€) exp {(88 }g_gl ge°/)h8) +E€) A} .
By (2.4), in which we put s=s (R(s)=R(s,) — (85 log (e°/h8)+2¢)),
we obtain
|| exp (=2, R (s0)) - exp {4.(85 log (e°/hd) +2¢)}
< Yeu(a)| - C. Max |F(u)|,

w—8ly =7(8+8)

so that

|a. | exp (=24, R(s)) K exp(—1.€) K; - C. %ﬁ,’ﬂcﬂu)’
Hence,
(2. 6) Sup [F(s)]

RCD=Cag)

g 2 'a’n' eXp ( Zn m (80))

n=1

S{Zexp( —2.€)}. K,-C- Max |F(u)|.

la— 81| = (8 +8)

By G. Valiron’s theorem‘” (p 4) and lim log n/4,=0, the simple

7100

convergence-abscissa o, of E exp(—4a,s) is given by

o, = lim 1/log 4,. log 1=0,

7> 00

so that f}l exp(—4e)<+o. Thus, by (2.6) we get
Sup [F(s)| < A Max | F(u)].

RH=Rzpd fw= 81| =m(8+8)
q.e.d.
(3) Proof of theorem.

(I) Let (1.1) be of order p. Then, by definition, there exists
at least one sequence {c,} such that

(i) lim gp=— o
(3. 1) m->+ oo

(i) p =mli13°1° 1/(—ow). log* log* M(o.,) -
Let us define two points s,, s; on C such that
(1) sy=cnt+it.,
(i) R(s)=R(s)) - (r(8)+¢), r(8)=88log (¢°/hd) .
By lemma, in which we replace € by ¢/2, we get
M(on) < A. Max |[F(u)| = A. [F(sl)|

|- 8]=m(5+8/2) lsl- sy|=m(5+2/2)

Therefore, putting R (s))=gs,,, we get
M(on) < A |F(s)| £ A M(oy,; D),
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where M(o,; D) == Max |F(s)|, so that, by (8.1)

R =a,, s€D
38.2) p=lim 1/(~o.). log* log* M(c.,)
m->+ oo
<Iim 1/(-o,). log* log* M(s,,; D). im (c}/0y) .
Since |on—on| < r(d)+e+x(8+¢€/2), we have evidently
lim 0':,./0',,.=1 .

m»+oo

Hence, by (3. 2),
p < lim 1/(~o3). log* log* M(o,,; D) < Iim 1/(— o). log* log* M(s; D).

Since the opposite inequality is evident, the equality holds, which
proves the first part of theorem.

(IT) Let (1.1) with =0 be of order p (0 <p <+ ), and of
type k. Then, by definition, there exists at least one sequence
{o.} such that

(1) lim g,=— o
(3_ 3) m>+00
(if) % =m1£130 1/exp ((—ow)p) . log™ M(o) .
We define two points s;, s; on C such that
(i) sy=cm+t,,
(i) R(s)=R(s))—¢&'[m. (0<e <¢)
Applying lemma, in which we replace ¢ by €&//2w, we get
M(o,) < A Max [F(u)| = A [F(s)],

fu=sy|=2’/2 [s{—sgl=¢/2
so that, putting o,=R(s)), M(s,) < A. M(o,,; D).
Hence, by (8. 3)

= lim 1/exp (= on)p). log* M(om)
< Ew 1/exp ((—ov)p). log* M(ay.; D) "lzri exp (o —am)p)
< lim 1/exp ((—o)p). log* M(o; D). exp (¢/(1/m+1/2)p)
= k(D). exp(e/(1/m+1/2)p).
Letting ¢/ =0,
E< kD).

Since the opposite inequality is evident, the equality holds, which
proves the second part of theorem.
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