111. On Right-Regular-Ideal-Rings *

By Hisao Tominaga

Department of Mathematics, Okayama University (Comm. by Z. SUETUNA, M.J.A., Nov. 12, 1953)

1. In his paper^{**)4)} T. Nakayama defined the notion of regularity of modules, which played an important rôle in his Galois theory. In this note we consider a ring in which every non-zero right ideal is right-regular and we call such a ring a right-regularideal-ring. To be easily seen, the notion of right-regular-idealrings is a generalization of that of simple rings as well as principalright-ideal-domains^{***)}.

Throughout this paper, except in the last remark, the term "ring" will mean a non-zero ring with an identity, and K will signify a ring. The notation \cong will be used to denote a K-isomorphism between two K-right-modules, unless otherwise specified. Further by minimum and maximum conditions in rings we shall understand those which are related to the right ideals.

Let *M* be a *K*-module. If the identity element of *K* operates as the identity operator for *M*, then *M* is called *unitary*. And if a finite generating system $\{u_1, \ldots, u_n\}$ of a unitary *K*-module *M* is such that $\sum_{i=1}^{n} u_i k_i = 0$ ($k_i \in K$) implies $k_i = 0$ ($i = 1, \ldots, n$), then we call it an *independent K-basis* of *M*.

Let M be a unitary K-module, then we shall denote by M^n the direct sum of its n copies written as column vectors. Thus $M \cong K^m$ means that M has an independent K-basis of m elements. On the other hand, we shall denote by "M the direct sum of its n copies written as row vectors. Naturally, "M may be considered as a K_n -module, where K_n denotes the total $n \times n$ matrix ring over K. Hereafter, let "M stand for the K_n -module with the natural K_n -module structure. To be easily verified, $({}^pM)^q$ is K_p -isomorphic to ${}^p(M^q)$, where p, q are natural numbers. From this fact, we can use the notation ${}^pM^q$ instead of ${}^p(M^q)$ or $({}^pM)^q$.

2. A non-zero unitary K-module M is said to be right-regular with respect to K if there exist two natural numbers p, q such that $M^p \cong K^q$. And a ring K is called a right-regular-ideal-ring

^{*)} I wish to thank Prof. G. Azumaya for his useful advices given to me.

^{**)} Numbers in brackets refer to the references at the end of this paper.

^{***)} Throughout the paper, a simple ring means a total matrix ring over a division ring. And a principal-right-ideal-domain means an integral domain in which every right ideal is principal.

(abbreviated, r-r-i-ring) if every non-zero right ideal in K is right-regular with respect to K.

Let $r(\pm 0)$ be a right ideal in an r-r-i-ring K, then $r^{p} \cong K^{q}$ for some positive integers p, q. Hence r^{p} possesses an independent K-basis of q column vectors (r_{1i}, \ldots, r_{pi}) $(i = 1, \ldots, q)$ with every r_{ki} in r. Then the system $\{r_{1i}; i=1, \ldots, q\}$ is clearly an ideal basis of r.

Next, let a, b be two non-zero two-sided ideals in an r-r-i-ring K. From the regularity of a there exist two natural numbers pand q such that $a^p = v_1 K + \cdots + v_q K$ with an independent K-basis $\{v_i\}$ of a^p . Then we have $(a \cdot b)^p = a^p \cdot b = v_1 b + \cdots + v_q b \neq 0$, which implies $a \cdot b \neq 0$. Thus we have

Theorem 1. An r-r-i-ring is a prime ring with maximum condition. If the minimum condition is assumed, it coincides with a simple ring.

As an r-r-i-ring K satisfies maximum condition, it can readily be seen that if $M^p \cong K^q$ for a (regular) K-module M then the rational number q/p is an invariant of M, and in this case we may call it the rank of M over K.

Now we prove the following principal theorem:

Theorem 2. Let K be an r-r-i-ring and let M be a right-regular K-module. Then every non-zero K-submodule of M is right-regular too.

Proof. Let $M^p \cong K^q$ and N be a non-zero submodule of M. Then N is considered as a submodule of M^p with an independent K-basis of q elements. Accordingly, without loss of generality, we may assume that M has an independent K-basis.

Let $M = u_1K + \cdots + u_mK$, where $\{u_i\}$ is an independent Kbasis. For m = 1, our assertion is clear. Now we assume that it is true for m-1. Let N be a non-zero K-submodule of M. When N is formed by the linear combinations of u_1, \ldots, u_{m-1} only, there is nothing to prove. Hence we may assume that N contains a linear combination $u_1k_1 + \cdots + u_mk_m$ with $k_m \neq 0$. Then all the k's appearing as the coefficients of u_m form a right ideal $r(\neq 0)$ in K, and $r \cong N - N_0$, where $N_0 (\subseteq u_1K + \cdots + u_{m-1}K)$ is the kernel of the homomorphism ρ of N onto r defined by $\rho(u_1k_1 + \cdots + u_mk_m) =$ k_m . By our induction hypothesis, for some $u, v, N_0^u \cong K^v$. As K is an r-r-i-ring, $r^p \cong K^q$ for some p, q, whence $(N - N_0)^p \cong K^q$. It follows therefore $N^{pu} - N_0^{pu} \cong (N - N_0)^{pu} \cong K^{qu}$. Since $N_0^{pu} \cong K^{pv}$, we have eventually $N^{pu} \cong K^{pv+qu}$.

A brief computation shows the following:

Corollary. Let K be an r-r-i-ring in which every right ideal has the rank not greater than 1, and let M be a right-regular K-module with the rank q/p. Then every non-zero K-submodule of K has the

487

rank not greater than q/p.

Remark. The validity of Theorem 2 is suggested by the results of Everett¹⁾²⁾. In fact, we can prove easily that if every right ideal in a ring K has an independent K-basis then K is a principal-right-ideal-domain.

It is further to be noted that if every finitely generated unitary K-module is regular with respect to K then K is a simple ring.

We prove next the following:

Theorem 3. A ring K is an r-r-i-ring if and only if the total matrix ring K_n is so.

Proof. Let K_n be an r-r-i-ring and $r (\neq 0)$ be a right ideal in K. Then r_n is a right ideal in K_n . From the regularity of r_n there exist two positive integers p, q such that r_n^p is K_n -isomorphic to K_n^q . And $r_n \cong r^{n^2}$, $K_n \cong K^{n^2}$. Hence $r^{n^2p} \cong K^{n^2q}$.

Conversely, suppose that K is an r-r-i-ring. Let \Re be a right ideal in K_n . Then, as is well known, the set c of all column vectors appearing in a fixed column of \Re is a K-module, and moreover, \Re is K_n -isomorphic to "c. On the other hand, c is considered as a submodule of K^n , thus by Theorem 2, $c^p \cong K^q$ for some p and q. \Re^{pn} is K_n -isomorphic to " c^{pn} , " c^{pn} is K_n -isomorphic to " K^{nq} and " K^{nq} is K_n -isomorphic to K_n^q . Hence we have that \Re^{pn} is K_n -isomorphic to K_n^q .

Corollary. Let K be an r-r-i-ring. Then the K-endomorphism ring (considered as a left operator domain) of any right-regular K-module is also an r-r-i-ring.

Remark. It is the McCoy's view that the radical of general rings may be defined as the intersection of a certain class of prime ideals. From this view-point, we want to give another definition of radicals as follows: In an arbitrary ring K the intersection R of all the two-sided ideals such that the residue class rings modulo them are r-r-i-rings is called the *radical* of K.

Clearly R contains the McCoy's radical³⁾ and it coincides with the classical one under the minimum condition.

In case K has an identity, as is well known, every two-sided ideal in K_n is of the form a_n with a two-sided ideal a in K, and conversely. Since $K_n - a_n$ is ring-isomorphic to $(K-a)_n$, by Theorem 3, $K_n - a_n$ is an r-r-i-ring if and only if K-a is so This shows that the radical of K_n is R_n .

References

1) C. J. Everett: Vector spaces over rings, Bull. Amer. Math. Soc., 48, 630-638 (1942).

488

2) ——: The basis theorem for vector spaces over rings, Bull. Amer. Math. Soc., 51, 531-532 (1945).

3) N. H. McCoy: Prime ideals in general rings, Amer. J. Math., 71, 823-833 (1949).

4) T. Nakayama: Galois theory for general rings with minimum condition, J. Math. Soc. Japan, 1, 203-216 (1949).