109. Note on Dirichlet Series. XI. On the Analogy between Singularities and Order-curves

By Chuji TANAKA

Mathematical Institute, Waseda University, Tokyo (Comm. by Z. SUETUNA, M.J.A., Nov. 12, 1953)

(1) Introduction. Let us put

(1.1) $F(s) = \sum_{n=1}^{\infty} a_n \exp(-\lambda_n s)$ $(s = \sigma + it, 0 \le \lambda_1 < \lambda_2 < \cdots < \lambda_n \rightarrow +\infty)$. O. Szász has proved the next theorem, which is a generalization of Hurwitz-Pólya's theorem (E. Landau¹⁾, p. 36).

O. Szász's Theorem (O. Szász²), p. 107). Let (1. 1) have the finite simple convergence-abscissa σ_s . If $\lim_{n \to +\infty} \log n/\lambda_n = 0$, then there exists a sequence $\{\varepsilon_n\}$ ($\varepsilon_n = \pm 1$) such that $\sum_{n=1}^{\infty} a_n \varepsilon_n \exp(-\lambda_n s)$ has $\sigma = \sigma_s$ as the natural boundary.

The author proved recently the following theorem of the same type:

Theorem (C. Tanaka⁵⁾, p. 308). Let (1. 1) have the finite simple convergence-abscissa σ_s . If $\lim_{n \to +\infty} \log n/\lambda_n = 0$, then there exists a Dirichlet series $\sum_{n=1}^{\infty} b_n \exp(-\lambda_n s)$ having $\sigma = \sigma_s$ as the natural boundary such that

(a) $|b_n| = |a_n|$ (n = 1, 2, ...) and $\lim_{n \to +\infty} |\arg(a_n) - \arg(b_n)| = 0$ or

(b) $\arg(b_n) = \arg(a_n) \ (n = 1, 2, ...) \ and \ \lim |b_n/a_n| = 1.$

In this note, we shall establish analogous theorems concerning order-curves. We first begin with

Definition. Let (1.1) be uniformly convergent in the whole plane. Then, we call the analytic curve C extending to $\sigma = -\infty$ the ordercurve of (1.1), provided that, in $D(\varepsilon; C)$ (ε : any positive constant), (1.1) has the same order as in the whole plane, where $D(\varepsilon; C)$ is the curved strip generated by circles with radii ε and having its centres on C.

Our theorems read as follows:

Theorem I. Let (1.1) with $\lim_{n \to +\infty} \log n/\lambda_n < +\infty$ be simply (necessarily absolutely) convergent in the whole plane, and C be any given analytic curve extending to $\sigma = -\infty$. Then, there exists a everywhere absolutely convergent Dirichlet series $\sum_{n=1}^{\infty} \varepsilon_n a_n \exp(-\lambda_n s)$ ($\varepsilon_n = \pm 1$), such that it has every curve C_{τ} ($-\infty < \tau < +\infty$) as its order-curve, where C_{τ} is obtained from moving C in parallel by i_{τ} ($-\infty < \tau < +\infty$).

Theorem II. Under the same assumptions as above, there exists

a everywhere absolutely convergent Dirichlet series $\sum_{n=1}^{\infty} b_n \exp(-\lambda_n s)$ having every curve C_{τ} $(-\infty < \tau < +\infty)$ as its order-curve such that

(a)
$$|b_n| = |a_n|$$
, $\lim_{n \to +\infty} |\arg(b_n) - \arg(a_n)| = 0$,

or

(b)
$$\arg(b_n) = \arg(a_n), \lim_{n \to +\infty} |b_n/a_n| = 1.$$

(2) Proof of Theorem I. Let σ_s , σ_a be the simple and absolute convergence-abscissa of (1.1) respectively. By the well-known theorem (D. V. Widder⁴⁾, p. 49), we have

$$0 \leq \sigma_a - \sigma_s \leq \overline{\lim_{n \to +\infty}} \log n/\lambda_n$$
,

so that, from $\sigma_s = -\infty$ and $\lim \log n/\lambda_n < +\infty$, $\sigma_a = -\infty$ immediately follows. Hence (1.1) is necessarily absolutely convergent in the whole plane.

Let (1. 1) be of order ρ . Then, by J. Ritt's theorem⁵⁾ and $\overline{\lim}$ log $n/\lambda_n < +\infty$, we have

 $\overline{\lim} \ 1/\lambda_n \log \lambda_n \, . \quad \log |a_n| = -1/\rho.$ (2.1)Hence we can select from $\{\lambda_n\}$ a sequence $\{\lambda_{ni}\}$ such that $\begin{cases} (i) \lim_{i \to +\infty} 1/\lambda_{ni} \log \lambda_{ni} \cdot \log |a_{ni}| = -1/\rho, \\ (ii) \lim_{i \to +\infty} (\lambda_{ni+1} - \lambda_{ni}) > 0, \lim_{i \to +\infty} i/\lambda_{ni} = 0. \end{cases}$ (2.2)

Now let us put

$$F(s) = \sum_{n=1}^{\infty} a_n \exp(-\lambda_n s)$$

=
$$\sum_{n \neq (ni)} a_n \exp(-\lambda_n s) + \sum_{i=1}^{\infty} a_{ni} \exp(-\lambda_n s)$$

=
$$f_0(s) + R(s).$$

Since F(s) converges absolutely everywhere, R(s) is evidently absolutely convergent. Taking account of J. Ritt's theorem and (2.2), R(s) is also of order ρ .

Next put

 $R(s) = \sum_{i=1}^{\infty} a_{ni} \exp((-\lambda_{ni}s)) = f_1(s) + f_2(s) + \cdots + f_n(s) + \cdots,$

where $f_n(s)$ (n=1, 2, ...) is a Dirichlet series having infinite number of terms of R(s), which is also everywhere absolutely convergent. We define new Dirichlet series

 $F(s; \{\varepsilon_n\}) = f_0(s) + \varepsilon_1 f_1(s) + \varepsilon_2 f_2(s) \cdots + \varepsilon_n f_n(s) + \cdots,$ where $\varepsilon_n = \pm 1$ (n = 1, 2, ...). Since F(s) converges absolutely everywhere, $F(s; \{\varepsilon_n\})$ is evidently everywhere absolutely convergent and by (2.1), it is also of order ρ .

Putting

$$G(s) = F(s; \{\varepsilon_n\}) - F(s; \{\varepsilon'_n\}) \quad (\{\varepsilon_n\} \neq \{\varepsilon'_n\}),$$

we can prove that

(2.3)

 $\begin{cases} (i) & G(s) \text{ is an integral function of order } \rho \text{,} \\ (ii) & G(s) \text{ has every curve } C_{\tau}(-\infty < \tau < +\infty) \text{ as its order-curve.} \end{cases}$

K**A**

In fact, setting

$$G(s) = \sum_{\nu=1}^{\infty} (\varepsilon_{\nu} - \varepsilon'_{\nu}) f_{\nu}(s) = \sum_{i=1}^{\infty} b_{mi} \exp(-\lambda_{mi}s),$$

we have

$$\begin{cases} (i) & m_i \in \{n_i\}, \\ (ii) & |b_{mi}| = 2 |a_{mi}|, \end{cases}$$

so that, by (2. 2)
$$\begin{cases} (i) & \lim_{i \to +\infty} 1/\lambda_{mi} \log \lambda_{mi}. \quad \log |b_{mi}| = -1/\rho, \\ (ii) & \lim_{i \to +\infty} (\lambda_{mi+1} - \lambda_{mi}) > 0, \quad \lim_{i \to +\infty} i/\lambda_{mi} = 0. \end{cases}$$

Hence, by (2.4), J. Ritt's theorem and an extension of G. Pólya's theorem⁶, (2.3) holds.

Let $F(s; \{\varepsilon_n\})$ have the subset $\{C_{\tau'}\}$ of $\{C_{\tau}\}$ as its order-curves. Corresponding to $\{C_{\tau'}\}$, we consider the set $\{\tau'\}$, which is evidently closed. Let us denote by $E(\{\varepsilon_n\})$ the complementary set of $\{\tau'\}$, which is obviously an open set. Then we can easily prove that (2.5) $E(\{\varepsilon_n\}) \cap E(\{\varepsilon'_n\}) = 0$ for $\{\varepsilon_n\} \not\equiv \{\varepsilon'_n\}$. In fact, if there should exist one curve $C_{\tau''}$ such that

 $\tau'' \in E(\{\varepsilon_n\}) \cap E(\{\varepsilon'_n\}) \neq 0,$

then $C_{\tau''}$ would not be the order-curve of G(s). For, in $D(\varepsilon; C_{\tau''})$ (ε : arbitrary positive constant), $F(s; \{\varepsilon_n\})$ and $F(s; \{\varepsilon'_n\})$ have the order less than ρ , so that $G(s) = F(s; \{\varepsilon'_n\}) - F(s; \{\varepsilon'_n\})$ has also the order less than ρ in this curved-strip, i.e. $C_{\tau''}$ is not the ordercurve of G(s), taking account of (2.3) (i). On the other hand, by (2.3) (ii), G(s) has all curves as its order-curves, which contradicts the existence of $C_{\tau''}$. Thus, (2.5) is proved.

If $E(\{\varepsilon_n\}) \neq 0$ for all $\{\varepsilon_n\}$, by (2.5) the function-family $\{F(s; \{\varepsilon_n\})\}$ is at most of enumerable power, which contradicts the power of continuum of $\{F(s; \{\varepsilon_n\})\}$. Hence, for at least one $\{\varepsilon_n\}$, $E(\{\varepsilon_n\})=$ 0. In other words, $F(s; \{\varepsilon_n\})$ has every curve $C_{\tau} (-\infty < \tau < +\infty)$ as its order-curve and it is evidently of the form

$$\sum_{n=1}^{\infty} \epsilon'_n a_n \exp(-\lambda_n s), \quad \epsilon'_n = \pm 1,$$

which is to be proved.

(3) Proof of Theorem II. By the arguments as above, F(s) is everywhere absolutely convergent. Let F(s) be of order ρ . Let us put

 $F(s; \theta, \alpha) = \sum_{i=1}^{\infty} a_{ni} \exp(\alpha \theta / \lambda_{ni}). \quad \exp(-\lambda_{ni}s) + \sum_{n \neq \{ni\}} a_n \exp(-\lambda_n s),$ where the sequence $\{\lambda_{ni}\}$ is determined by (2.2), and α, θ (θ : real)

where the sequence $\{\lambda_{nl}\}$ is determined by (2.2), and α , θ (θ : real) are constants determined later. Then $F(s; \theta, \alpha)$ is an integral function of order ρ , taking account of J. Ritt's theorem and (2.2).

Putting

$$G(s) = F(s; \theta_1, \alpha) - F(s; \theta_2, \alpha) \quad (\theta_1 \neq \theta_2),$$

[Vol. 29,

480

G(s) is also an integral function of order ρ . For,

$$G(s) = \sum_{i=1}^{\infty} a_{ni} \left\{ \exp\left(\alpha \theta_1 / \lambda_{ni}\right) - \exp\left(\alpha \theta_2 / \lambda_{ni}\right) \right\} \cdot \exp\left(-\lambda_{ni}s\right)$$
$$= \sum_{i=1}^{\infty} a_{ni} 0(1/\lambda_{ni}), \exp\left(-\lambda_{ni}s\right),$$
$$hy (2, 2)$$

so that, by (2.2)

 $\lim_{i \to +\infty} 1/\lambda_{ni} \log \lambda_{ni} \cdot \log |a_{ni} 0(1/\lambda_{ni})|$

 $= \lim_{\substack{i \to +\infty \\ i \to +\infty}} 1/\lambda_{ni} \log \lambda_{ni} \cdot \log |a_{ni}| + \lim_{\substack{i \to +\infty \\ i \to +\infty}} 1/\lambda_{ni} \log \lambda_{ni} \cdot \log |0(1/\lambda_{ni})| = -1/\rho,$ which shows that G(s) is of order ρ .

Let $E(\theta, \alpha)$ be the complementary set of $\{\tau'\}$, where $F(s; \theta, \alpha)$ has the subset $\{C_{\tau'}\}$ of $\{C_{\tau}\}$ as its order-curves. Then $E(\theta, \alpha)$ is evidently an open set. Now we can prove (3.1) $E(\theta_1, \alpha) \cap E(\theta_2, \alpha) = 0$ for $\theta_1 \neq \theta_2$.

In fact, if there should exist one curve $C_{\tau''}$ such that

 $\tau'' \in E(\theta_1, \alpha) \cap E(\theta_2, \alpha) \neq 0,$

then by the entirely similar discussion as above, $C_{\tau''}$ would not be the order-curve of G(s). On the other hand, by (2.2) and an extension of G. Pólya's theorem⁶⁾, G(s) has every curve C_{τ} $(-\infty < \tau < +\infty)$ as its order-curve, which leads us to a contradiction. Thus (3.1) is proved.

If $E(\theta, \alpha) \neq 0$ holds for $0 \leq \theta \leq \gamma$ (γ : a fixed constant), by (3.1), the function-family $\{F(s; \theta, \alpha)\}$ is at most of enumerable power, which contradicts the power of continuum of $\{F(s; \theta, \alpha)\}$. Hence, at least one θ' , $E(\theta', \alpha)=0$. In other words, $F(s; \theta', \alpha)$ has every curve C_{τ} ($-\infty < \tau < +\infty$) as its order-curves. If $\alpha =$ (-1)^{1/2} (=1), (a) ((b)) of Theorem II holds, q.e.d.

References

1) E. Landau: Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, Berlin (1929).

2) O. Szász: Über Singularitäten von Potenzreihen und Dirichletschen Reihen am Rande des Konvergenzbereichs, Math. Ann., 85 (1922).

3) C. Tanaka: Note on Dirichlet series. IV. On the singularities of Dirichlet series, Proc. Amer. Math. Soc., 4, No. 2 (1953).

4) D. V. Widder: The Laplace-transform, Princeton (1946).

5) J. Ritt: On certain points in the theory of Dirichlet series, Amer. Jour. Math., 50 (1928).

6) C. Tanaka: Note on Dirichlet series. X. Remark on S. Mandelbrojt's theorem, Proc. Japan Acad., 29, 423 (1953).