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1o Let A be an operator on a Hilbert space and let R(A) be a
yon Neumann algebra generated by A (i.e., the smallest von Neumann
algebra containing A). Then A is said to be of type I (II, III) if
R(A) is of type I (II, III). Clearly every normal operator A is of
type I where R(A) is abelian. Moreover, every operator on a finite
dimensional Hilbert space is of type I. Namely the classification
described above has the essential meaning for non-normal operators
on infinite dimensional Hilbert spaces. We shall concentrate our
attention on the following question. Which non-normal operators are
of type I? The answer is not much. In our recent paper [3 we
have shown that an isometry is of the type I. This note is the
second step in that direction.

That is, we shall prove the following theorem.
THEOREM. A completely continuous operator on a Hilbert space

is of type L
The class of completely continuous operators contains two im-

portant classes, the so-called Hilbert-Schmidt class and the trace class.
Let A be an operator on a Hilbert space H and let {9,} a family
of complete orthonormal vectors in H. Then the quantity a(A)--
(vllA(?[[)1/2 is independent of {} and the operators A for a(A)< oo

form the Hilbert-Schmidt class. The product of two operators in the
Hilbert-Schmidt class form the trace class. As is well known, every
operator in the trace class is necessarily in the Hilbert-Schmidt class
and every operator in the Hilbert-Schmidt class is necessarily com-
pletely continuous. Thus we shall obtain the following corollary.

COROLLARY. An operator in the Hilbert-Schmidt class (or the
trace class) is of type L

By an operator we shall mean a bounded linear transformation
on a Hilbert space and for the terminology of von Neumann algebras
we shall always refer to [1.

2. The first step is to decompose an arbitrary operator into
type I, II and III components. If a von Neumann algebra R(A)
generated by A is denoted by M, it is easy to see that for each
EeM’, a von Neumann algebra M which is the restriction of M to
EH is generated by the restriction AE of A to EH. Thus, keeping
in mind that there exists a unique family of mutually orthogonal
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central projections E (i= 1, 2, 3) in M such that M=ZM where
M, (resp. M.., M,) is of type I (resp. II, III), we obtain the following

LEMMA 1. Let A be an arbitrary operator on a .Hilbert space
H. Then there exists a unique family of mutually orthogonal central
projections E (i=1, 2, 3) in R(A) such that

A=A,A,.Av,
where A, (resp. A., A) is of type I (resp. II, III) if Et (resp. E,

This shows that certain problems dealing with arbitrary operators
are reduced to the case of operators of type I (II, III).

3. Let A be an operator on a Hilbert space H and let 2 a proper
value of A. The null space of the operator A--2I is called the proper
subspace of A corresponding to 2 and is denoted by (2). That is
to say, ()={eH; A=}. Then it is well known that a proper
subspace of a completely continuous operator corresponding to a non-
zero proper value is finite dimensional. Actually, this fact gives the
key to the proof of the theorem. The following lemma can be viewed
as the natural step toward the proof.

LEMMA 2. Let M be a yon Neumann algebra generated by an

operator A on a .Hilbert space H and let E a projection on the proper
subspace () of A. Then E belongs to M.

PROOF. It is sufficient to show that E commutes with all oper-
ators belonging to M’. Let A’ be an arbitrary operator in M’. Then,
for all e7(), the equality A(A’)--A’A--A’=A’ yields
A’e(2). Similarly, A’*e(2)for all e7(), thus 7() reduces
A’. This means that E commutes with A’.

Before beginning to prove the theorem, we need to mention the
special property of a self-adjoint completely continuous operator A
on a Hilbert space H. It is well known that there exists an ortho-
normal basis in H whose elements are proper vectors of A (cf. 2;
Theorem 6). Therefore, let {/,} be a family of all distinct proper
values of A (which is necessarily a finite or a denumerably infinite

sequence) and let P a projection on the proper subspace (g,). Then

XP--I and A--XdP. We are now in a position to prove the
theorem of this paper.

PROOF OF THEOREM. Let A be a completely continuous operator
on a Hilbert space H. Then A-(A*A)1/2 is also completely continu-
ous. Therefore the self-adjoint operator [AJ admits the following

representation as mentioned above; [A=Z,p,P,, where P is the
projection on the proper subspace (,a,) and XP,-L It follows
from Lemma 2 that each P, belongs R(A)R(A). Moreover, if
P, is a projection corresponding to a non-zero proper value /,, PH
is finite dimensional since A_ is completely continuous.
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Now, by Lemma 1, A is decomposed in the form A=AAr
where E and F are mutually orthogonal central projections of R(A)
such that E+F=I and A is of type I if E=0 and A generates a
continuous von Neumann algebra if F:0.

To prove our assertion we must show that F--0. Let us suppose
F=0. Since F is a central projection in R(A), {FP} is a family of
mutually orthogonal projection in R(A) and F=X,FP,. If there
exists a projection P, corresponding to a non-zero proper value p
such that FP#O, R(A)FP is of type I since FPH is finite dimen-
sional. This contradicts to the fact that R(A) is a continuous von
Neumann algebra. Thus FP=0 if /# 0. Consequently, if there
exists a projection P0 corresponding to the proper value 0, F--FPo,
and otherwise F=0. The equality F--FPo implies that FH is con-
tained in the null space of [A (that is, A). Hence A=0 and R(A)
is of type I. This contradiction shows that F--0. Now we can
conclude that R(A) is of type I, that is to say, A is of type I.
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