109. A Non-Commutative Integration Theory for a Semi-Finite AW*-algebra and a Problem of Feldman

By Kazuyuki SAITÔ Department of Mathematics, Tôhoku University (Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1970)

We shall extend Feldman's result on "Embedding of AW^* -algebras" to semi-finite AW^* -algebras, that is, we shall show that a semi-finite AW^* -algebra with a separating set of states which are completely additive on projections (c.a. states) has a faithful representation as a semi-finite von Neumann algebra. Full proofs will appear elsewhere.

Let M be a semi-finite AW^* -algebra with a separating set \mathfrak{S} of c.a. states. By a c.a. state ϕ on M we mean a state on M such that for any orthogonal family of projections $\{e_i\}$ in M with $e = \sum_i e_i \ \phi(e)$ $= \sum_i \phi(e_i)$. Let \mathcal{C} be the algebra of "measurable operators" affiliated with M [6]. Denote the set of all positive elements, projections, partial isometries and unitary elements in M by M^+ , M_p , M_{pi} and M_u , respectively.

Let $\tilde{\otimes}$ be the set of finite linear combinations of elements in $\{a^*\omega a, \omega \in \mathfrak{S}, a \in M\}$, where $(a^*\omega a)(x) = \omega(axa^*)$ for all $x \in M$. For any positive number ε and any positive integer n, put $V_{\varepsilon,n}(\omega_1, \omega_2, \dots, \omega_n)(0) = \{a; |\omega_i(a)| < \varepsilon, i=1, 2, \dots, w_1, w_2, \dots, \omega_n \in \tilde{\mathfrak{S}}\}$ and we define the $\sigma(\mathfrak{S})$ -topology of M by assigning sets of the form $V_{\varepsilon,n}(\omega_1, \omega_2, \dots, \omega_n)(0)$ to be its neighborhood system of 0. Since $\tilde{\mathfrak{S}}$ is a separating set of continuous linear functionals on M, this topology is the separated locally convex topology defined by the family of semi-norms $q_{\omega}(x) = |\omega(x)|, \omega \in \tilde{\mathfrak{S}}$. Then we have, by [3, Lemma 3],

Lemma 1. Let $\{e_{\alpha}\}\alpha \in A$ be an orthogonal set of projections in M such that $e = \text{Sup } [\sum \{e_{\alpha}, \alpha \in I\}, A \supset I \in F(A) \text{ where } F(A) \text{ is the family of all finite subsets of } A], then <math>\sum \{e_{\alpha}, \alpha \in I\} \rightarrow e(I \in F(A))$ in the $\sigma(\mathfrak{S})$ -topology.

Lemma 2. Any abelian AW^* -subalgebra, especially, the center Z of M is a W*-algebra ([7]) and the $\sigma(\mathfrak{S})$ -topology restricted to this subalgebra is equivalent to the σ -topology on bounded spheres.

Let Z be the set of all $[0, +\infty]$ -valued continuous functions on the spectrum of Z [1], then we have

Theorem 1. There is an operation Φ from M^+ to Z having the following properties:

(i) $\Phi(h_1+h_2)=\Phi(h_1)+\Phi(h_2) h_1, h_2 \in M^+;$

(ii) $\Phi(\lambda h) = \lambda \Phi(h)$ if λ is a positive number and $h \in M^+$;

(iii) $\Phi(st) = t \cdot \Phi(s) \ s \in M^+, \ t \in Z^+;$

(iv) $\Phi(uau^{-1}) = \Phi(a)$ if $a \in M^+$ and $u \in M_u$;

(v) for any $a \in M^+$ with $\Phi(a)=0, a=0;$

(vi) for every directed increasing net $\{a_{\alpha}\}$ in M^+ such that $a_{\alpha} \rightarrow a$ in the $\sigma(\mathfrak{S})$ -topology for some a in M, $\Phi(a_{\alpha}) \uparrow \Phi(a)$ in Z;

(vii) for every non-zero a in M^+ , there exists a nonzero $b \in M^+$ majorized by a such that $\Phi(b) \in Z^+$.

Then by the above theorem and [3, Lemma 2], we have

Proposition 1. In Theorem 1, let \mathcal{P} be the set $\{s \in M, s \geq 0, \Phi(s) \in Z^+\}$, then \mathcal{P} is the positive part of a two-sided ideal \mathfrak{N} and there exists a unique linear operation $\dot{\Phi}$ on \mathfrak{N} to Z which coincides with Φ on \mathcal{P} ; moreover this linear operation satisfies the following properties;

(a) If $t \in \mathfrak{N}$ with $t \ge 0$ and $\dot{\Phi}(t) = 0$ only if t = 0;

(b) $\dot{\phi}(st) = \dot{\phi}(ts)$ if $s \in M$ and $t \in \Re$;

(c) $\dot{\Phi}(st) = s \cdot \dot{\Phi}(t)$ if $s \in Z$ and $t \in \mathfrak{N}$;

(d) let $\{t_{\mu}\}$ be a directed increasing net of positive elements in \mathfrak{N} such that $t_{\mu} \rightarrow t$ in the $\sigma(\mathfrak{S})$ -topology for some positive element t in Mand if $\{\dot{\Phi}(t_{\mu})\}$ is uniformly bounded, then $t \in \mathfrak{N}$ and $\dot{\Phi}(t) = \sup \{\dot{\Phi}(t_{\mu}), \mu\};$

(e) every non-negative element in M is the supremum of a set of non-negative elements in \Re .

Now let p be a finite projection in M then there is an indexed family $\{e_{\mu}\}$ of mutually orthogonal central projections such that $\sum_{\mu} e_{\mu}$ =1 and that for each $\mu \ pMe_{\mu}p$ is a σ -finite finite AW^* -algebra. Therefore by Proposition 1(e), there is a sequence $\{p_n^{(\mu)}\}_{n=1}^{\infty}$ of mutually orthogonal projections in \mathfrak{N} such that $pe_{\mu} = \sum_{n=1}^{\infty} p_n^{(\mu)}$. Write D(p) $= \sum_{\mu} \sum_{n=1}^{\infty} \dot{\Phi}(p_n^{(\mu)})$ in Z. If p is a properly infinite projection with central carrier z(p), $D(p)(\omega)$ is defined as $\infty \cdot z(p)(\omega)$, thus we have

Theorem 2. In M, we can define a dimension function D(e) with values in Z for all projections $e \in M$, in such a way that

(i) $D(e)(\omega) < \infty$ except on a non-dense set if and only if e is finite;

(ii) if $p, q \in M_p$ and pq=0, then D(p+q)=D(p)+D(q);

(iii) for any indexed chain of projections $\{e_{\lambda}; \lambda \in \Lambda\}$ in $M, D(\bigvee_{\lambda \in \Lambda} e_{\lambda})$ =Sup $\{D(e_{\lambda}), \lambda \in \Lambda\};$

 $= \operatorname{Sup} \{ D(e_{\lambda}), \lambda \in A \},$

(iv) if u is in M_{pi} , then $D(u^*u) = D(uu^*)$;

(v) for $e \in Z_p$ and $p \in M_p$, $D(e) \neq 0$ and D(ep) = eD(p).

Now along the same lines with [8], we introduce the notion of the "convergence nearly everywhere" of sequences in C.

Definition 1. We say that a sequence $\{x(n)\}_{n=1}^{\infty}$ of C converges nearly everywhere (or converges n.e.) to an element x in C if for any positive ε , there exist a positive integer $n_0(\varepsilon)$ and an SDD (strongly

464

dense domain (see [6, Definition 3.1])) $\{e_n(\varepsilon)\}$ such that $(x(n)-x)[e_n(\varepsilon),1]$ $\varepsilon \ \bar{M}$ and $||(x(n)-x)[e_n(\varepsilon), 1]||_{\infty} < \varepsilon$ for all $n \ge n_0(\varepsilon)$, where we write $||[x, 1]||_{\infty} = ||x||$ (see [6, Theorem 3.1, Lemma 5.2]).

Remark. (1) We must note that a limit nearly everywhere is unique. Making use of the dimension function (Theorem 2), by the same way as that of I. E. Segal, we have: (2) if $\{x(n)\}_{n=1}^{\infty}$ and $\{y(n)\}_{n=1}^{\infty}$ are sequences in C converging n.e. to x and y in C, respectively, then $\{x(n)+y(n)\}_{n=1}^{\infty}$ converges to x+y n.e., (3) let $\{x(n)\}_{n=1}^{\infty}$ be a sequence in Cwhich converges n.e. to x in C and suppose that there is a central projection e which is σ -finite with respect to the center such that x(n)[1-e, 1]=0 for all n, then there exists a strictly increasing subsequence $\{n_i\}$ of positive integers such that $\{x(n_i)^*\}_{n=1}^{\infty}$ converges n.e. to x^* and (4) in (3), for any y in C, there are subsequences $\{k_i\}$ and $\{m_i\}$ of positive integers such that $x(k_i)y \rightarrow xy(i \rightarrow \infty)$ and $yx(m_i) \rightarrow yx(i \rightarrow \infty)$ nearly everywhere.

Theorem 3. There exists a $[0, +\infty]$ -valued function τ (a faithful semi-finite trace) on M^+ having the following properties:

(i) If $a, b \in M^+$, then $\tau(a+b) = \tau(a) + \tau(b)$;

(ii) if $a \in M^+$ and λ is a positive number, $\tau(\lambda a) = \lambda \tau(a)$ (we recall here $0 \cdot + \infty = 0$ by our conventions);

(iii) if $a \in M^+$ and $u \in M_u$, $\tau(u^*au) = \tau(a)$;

(iv) $\tau(a)=0$ ($a \in M^+$) implies a=0;

(v) for any non-zero a in M^+ , there is a non-zero b in M^+ majorized by a such that $\tau(b) < \infty$;

(vi) let $\{a_{\alpha}\}$ be a directed increasing net of positive elements in M such that $a_{\alpha} \rightarrow a$ in the $\sigma(\mathfrak{S})$ -topology for some $a \in M$, then $\tau(a_{\alpha}) \uparrow \tau(a)$.

Then, there are a two-sided ideal \mathcal{E} , whose positive part is $\{a; a \in M^+, \tau(a) < \infty\}$ and a linear non-negative functional $\dot{\tau}$ on \mathcal{E} coincides with τ on $\{a; a \in M^+, \tau(a) < \infty\}$ with the following properties:

(a) $\dot{\tau}(xy) = \dot{\tau}(yx)$ if x or $y \in \mathcal{E}$, x and $y \in M$,

(b) $\dot{\tau}(u^*xu) = \dot{\tau}(x)$ if $x \in \mathcal{E}$ and $u \in M_u$.

Let \mathcal{F} be the set $\{a ; a \in M, \tau(\operatorname{LP}(a)) < \infty\}$ (where $\operatorname{LP}(a)$ is the left projection of a in M), then \mathcal{F} is a two-sided ideal contained in \mathcal{E} such that $\mathcal{E}_p = \mathcal{F}_p$.

Definition 2. An element x in C is integrable if there exists a sequence $\{x(n)\}_{n=1}^{\infty}$ in \mathcal{F} such that $[x(n), 1] \rightarrow x(n.e.)$ and $\dot{\tau}(|x(n) - x(m)|) \rightarrow 0$ as n and $m \rightarrow \infty$. The integral of x, in symbol $\tilde{\tau}(x)$, is defined by $\tilde{\tau}(x) = \lim_{n \rightarrow \infty} \dot{\tau}(x(n))$. The set of all integrable elements in C is denoted by $L^{1}(M, \tau)$.

Remark. Note first that the value $\tilde{\tau}(x)$ of the integral of x in fact exists and is finite and that it is uniquely determined by any particular such sequences. Moreover by remark (2) following Defini-

tion 1, $\tilde{\tau}$ is linear on $L^1(M, \tau)$. Secondly we note that if $x \in \mathcal{E}$, then [x, 1] is integrable and its integral is equal to $\dot{\tau}(x)$.

By the remark following Definition 1, we have

Proposition 2. (1) For any $s \in M$ and $t \in L^1(M, \tau)$, [s, 1]t, t[s, 1]and $t^* \in L^1(M, \tau)$. Moreover, $\tilde{\tau}([s, 1]t) = \tilde{\tau}(t[s, 1])$ and $\tilde{\tau}(t^*) = \overline{\tilde{\tau}(t)}$ (where $\overline{\alpha}$ is the complex conjugate of a complex number α).

(2) If $p(\varepsilon M_p)$ is integrable, then $p \varepsilon \mathcal{E}_p$ and $\tilde{\tau}([p, 1]) = \dot{\tau}(p)$.

(3) For any $t \in L^1(M, \tau)$, we define $||t||_1 = \sup \{|\tilde{\tau}([s, 1]t)|, s \in M, ||s|| \leq 1\}$. Then the function $t \to ||t||_1 (t \in L^1(M, \tau))$ satisfies actually the properties of a norm:

(a) $0 \leq ||t||_1 < \infty$ for $t \in L^1(M, \tau)$ and $||t||_1 = 0$ if and only if t = 0,

(b) $||s+t||_1 \leq ||s||_1 + ||t||_1$ if $s, t \in L^1(M, \tau)$,

(c) $\|\lambda t\|_1 = |\lambda| \cdot \|t\|_1$ if $t \in L^1(M, \tau)$ and λ is a complex number,

(d) $||t||_1 = ||t^*||_1$,

(e) if $s \in M$, then $||[s, 1]t||_1 \leq ||s|| ||t||_1$ and $||t[s, 1]||_1 \leq ||s|| ||t||_1$.

(4) The integral of a non-negative integrable element of C is non-negative.

Definition 3. Let $L^2(M, \tau)$ be the set $\{t; t \in \mathcal{C}, t^*t = |t|^2 \in L^1(M, \tau)\}$ and we define $||t||_2 = \tilde{\tau}(|t|^2)^{1/2}$ for $t \in L^2(M, \tau)$.

Proposition 3. (1) If $s, t \in L^2(M, \tau)$, then $s^*t \in L^1(M, \tau)$ and $|\tilde{\tau}(s^*t)|^2 \leq ||s||_2^2 ||t||_2^2$.

(2) $||t||_2 = \sup \{||ts||_1, ||s||_2 \leq 1, ts \in L^1(M, \tau)\}$ (for $t \in L^2(M, \tau)$) and $L^2(M, \tau)$ is a pre-Hilbert space with respect to the norm $|| \quad ||_2$. Moreover this norm satisfies:

(a) $||t^*||_2 = ||t||_2 = ||t||_2$ for $t \in L^2(M, \tau)$,

(b) for any $s \in M$ and $t \in L^2(M, \tau)$, [s, 1]t and t[s, 1] are in $L^2(M, \tau)$. Moreover $||[s, 1]t||_2 \le ||s|| ||t||_2$ and $||t[s, 1]||_2 \le ||s|| ||t||_2$.

Theorem 4. $\overline{\mathcal{F}}(=\{[x, 1], x \in \mathcal{F}\})$ is norm-dense in $L^2(M, \tau)$ and $L^1(M, \tau)$, respectively. Moreover $L^1(M, \tau)$ (resp. $L^2(M, \tau)$) is a Banach space with respect to the norm $\| \|_1$ (resp. $\| \|_2$). In particular, $L^2(M, \tau)$ is a Hilbert space.

Now let us consider the left regular representation of M, which is defined by $\pi_l(x)a=[x, 1]a, a \in L^2(M, \tau), x \in M$. Then by Proposition 3, $\pi_l(x)$ is a bounded linear operator on $L^2(M, \tau)$ for each $x \in M$. On the other hand $\pi_l(x)=0$, then [x, 1]a=0 for all $a \in L^2(M, \tau)$. Since τ is semi-finite, there is an orthogonal set $\{e(\alpha)\}$ of projections in \mathcal{F} such that $\sum e(\alpha)=1$. Therefore $\overline{\mathcal{F}} \subset L^2(M, \tau)$ implies that $xe(\alpha)=0$ for all α . Hence by [4, Lemma 2.2], x=0. Therefore $\pi_l(\cdot)$ is a *-isomorphism of M into $B(L^2(M, \tau))$ (where $B(L^2(M, \tau))$ is the algebra of all bounded linear operators on $L^2(M, \tau)$).

Let $\{g_i\}_{i+1}$ be a set of mutually orthogonal projections of M with $e = \sum g_i$, then for each $a \in \mathcal{F}$

466

No. 5]

$$\begin{aligned} \|\pi_{i}(e)[a,1] - \sum_{i \in J} \pi_{i}(g_{i})[a,1]\|_{2}^{2} \\ = \dot{\tau}(a^{*}(e - \sum_{i \in J} g_{i})a) \end{aligned}$$

for any finite subset J of I. Therefore by Theorem 3 (v) and Theorem 4, $\sum_{i \in J} \pi_i(g_i) \rightarrow \pi_i(e)$ strongly. Thus $\pi_i(M)$ is an AW^* -subalgebra of $B(L^2(M, \tau))$ in the sense of [5.3, Definition].

Let *M* be the weak closure of $\pi_i(M)$, then *M* is a von Neumann algebra on $L^2(M, \tau)$.

Theorem 5. $\pi_{l}(M) = M$, that is, M is a semi-finite W*-algebra.

References

- J. Dixmier: Sur certains espaces considérés par M. H. Stone, Summa Brasil. Math., 2, 151-182 (1951).
- [2] ——: Les algèbres d'opérateurs dans l'espace hilbertien. Gauthier-Villars, Paris (1957).
- [3] J. Feldman: Embedding of AW*-algebras. Duke Math. J., 23, 303-307 (1956).
- [4] I. Kaplansky: Projections in Banach algebras. Ann. of Math., 53, 235-249 (1951).
- [5] ——: Algebras of type. I. Ann. of Math., 56, 460-472 (1952).
- [6] K. Saitô: On the algebra of measurable operators for a general AW^* -algebra. Tôhoku Math. J., **21**, 249–270 (1969).
- [7] S. Sakai: The theory of W*-algebras. Mimeographed Note, Yale Univ. (1962).
- [8] I. E. Segal: A non-commutative extension of abstract integration. Ann. of Math., 57, 401-457 (1953).