109. A Non-Commutative Integration Theory for a Semi-Finite AW*-algebra and a Problem of Feldman

By Kazuyuki Saitô
Department of Mathematics, Tôhoku University
(Comm. by Kinjirô Kunugi, M. J. A., May 12, 1970)

We shall extend Feldman's result on "Embedding of $A W^{*}$-algebras" to semi-finite $A W^{*}$-algebras, that is, we shall show that a semifinite $A W^{*}$-algebra with a separating set of states which are completely additive on projections (c.a. states) has a faithful representation as a semi-finite von Neumann algebra. Full proofs will appear elsewhere.

Let M be a semi-finite $A W^{*}$-algebra with a separating set \mathbb{S} of c.a. states. By a c.a. state ϕ on M we mean a state on M such that for any orthogonal family of projections $\left\{e_{i}\right\}$ in M with $e=\sum_{i} e_{i} \phi(e)$ $=\sum_{i} \phi\left(e_{i}\right)$. Let \mathcal{C} be the algebra of "measurable operators" affiliated with M [6]. Denote the set of all positive elements, projections, partial isometries and unitary elements in M by $M^{+}, M_{p}, M_{p i}$ and M_{u}, respectively.

Let $\widetilde{\mathbb{S}}$ be the set of finite linear combinations of elements in $\left\{a^{*} \omega a\right.$, $\omega \varepsilon \subseteq, a \varepsilon M\}$, where $\left(a^{*} \omega a\right)(x)=\omega\left(a x a^{*}\right)$ for all $x \varepsilon M$. For any positive number ε and any positive integer n, put $V_{\varepsilon, n}\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)(0)$ $=\left\{a ;\left|\omega_{i}(a)\right|<\varepsilon, i=1,2, \cdots n, \omega_{1}, w_{2}, \cdots, \omega_{n} \varepsilon \widetilde{\mathbb{S}}\right\}$ and we define the $\sigma(\mathbb{S})-$ topology of M by assigning sets of the form $V_{\varepsilon, n}\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)(0)$ to be its neighborhood system of 0 . Since $\widetilde{\Im}$ is a separating set of continuous linear functionals on M, this topology is the separated locally convex topology defined by the family of semi-norms $q_{\omega}(x)=|\omega(x)|, \omega \varepsilon \widetilde{\mathbb{S}}$. Then we have, by [3, Lemma 3],

Lemma 1. Let $\left\{e_{\alpha}\right\} \alpha \varepsilon A$ be an orthogonal set of projections in M such that $e=\operatorname{Sup}\left[\sum\left\{e_{\alpha}, \alpha \varepsilon I\right\}, \mathrm{A} \supset I \varepsilon F(A)\right.$ where $F(A)$ is the family of all finite subsets of A], then $\sum\left\{e_{\alpha}, \alpha \in I\right\} \rightarrow e(I \in F(A))$ in the $\sigma(\mathbb{S})-$ topology.

Lemma 2. Any abelian AW*-subalgebra, especially, the center Z of M is a W^{*}-algebra ([7]) and the $\sigma(\mathbb{S})$-topology restricted to this subalgebra is equivalent to the σ-topology on bounded spheres.

Let \boldsymbol{Z} be the set of all $[0,+\infty]$-valued continuous functions on the spectrum of Z [1], then we have

Theorem 1. There is an operation Φ from M^{+}to Z having the following properties:
(i) $\Phi\left(h_{1}+h_{2}\right)=\Phi\left(h_{1}\right)+\Phi\left(h_{2}\right) h_{1}, h_{2} \varepsilon M^{+}$;
(ii) $\Phi(\lambda h)=\lambda \Phi(h)$ if λ is a positive number and $h \varepsilon M^{+}$;
(iii) $\Phi(s t)=t \cdot \Phi(s) s \varepsilon M^{+}, t \varepsilon Z^{+}$;
(iv) $\Phi\left(u a u^{-1}\right)=\Phi(a)$ if $a \varepsilon M^{+}$and $u \varepsilon M_{u}$;
(v) for any $a \in M^{+}$with $\Phi(a)=0, a=0$;
(vi) for every directed increasing net $\left\{a_{\alpha}\right\}$ in M^{+}such that $a_{\alpha} \rightarrow a$ in the $\sigma(\mathbb{S})$-topology for some a in $M, \Phi\left(a_{\alpha}\right) \uparrow \Phi(a)$ in Z;
(vii) for every non-zero a in M^{+}, there exists a nonzero $b \varepsilon M^{+}$ majorized by a such that $\Phi(b) \varepsilon Z^{+}$.

Then by the above theorem and [3, Lemma 2], we have
Proposition 1. In Theorem 1, let \mathscr{P} be the set $\{s \varepsilon M, s \geqq 0$, $\left.\Phi(s) \varepsilon Z^{+}\right\}$, then \mathscr{P} is the positive part of a two-sided ideal \mathfrak{R} and there exists a unique linear operation $\dot{\Phi}$ on $\mathfrak{\Re}$ to Z which coincides with Φ on \mathscr{P}; moreover this linear operation satisfies the following properties;
(a) If $t \varepsilon \Re$ with $t \geqq 0$ and $\dot{\Phi}(t)=0$ only if $t=0$;
(b) $\dot{\Phi}(s t)=\dot{\Phi}(t s)$ if $s \varepsilon M$ and $t \varepsilon \mathfrak{R}$;
(c) $\dot{\Phi}(s t)=s \cdot \dot{\Phi}(t)$ if $s \varepsilon Z$ and $t \varepsilon \mathfrak{R}$;
(d) let $\left\{t_{\mu}\right\}$ be a directed increasing net of positive elements in \mathfrak{n} such that $t_{\mu} \rightarrow$ t in the $\sigma(\mathbb{S})$-topology for some positive element t in M and if $\left\{\dot{\Phi}\left(t_{\mu}\right)\right\}$ is uniformly bounded, then $t \varepsilon \mathfrak{\Re}$ and $\dot{\Phi}(t)=\operatorname{Sup}\left\{\dot{\Phi}\left(t_{\mu}\right), \mu\right\}$;
(e) every non-negative element in M is the supremum of a set of non-negative elements in \mathfrak{n}.

Now let p be a finite projection in M then there is an indexed family $\left\{e_{\mu}\right\}$ of mutually orthogonal central projections such that $\sum_{\mu} e_{\mu}$ $=1$ and that for each $\mu p M e_{\mu} p$ is a σ-finite finite $A W^{*}$-algebra. Therefore by Proposition 1(e), there is a sequence $\left\{p_{n}^{(\mu)}\right\}_{n=1}^{\infty}$ of mutually orthogonal projections in \mathfrak{N} such that $p e_{\mu}=\sum_{n=1}^{\infty} p_{n}^{(\mu)}$. Write $D(p)$ $=\sum_{\mu} \sum_{n=1}^{\infty} \dot{\Phi}\left(p_{n}^{(\mu)}\right)$ in Z. If p is a properly infinite projection with central carrier $z(p), D(p)(\omega)$ is defined as $\infty \cdot z(p)(\omega)$, thus we have

Theorem 2. In M, we can define a dimension function $D(e)$ with values in \boldsymbol{Z} for all projections e εM, in such a way that
(i) $D(e)(\omega)<\infty$ except on a non-dense set if and only if e is finite;
(ii) if $p, q \varepsilon M_{p}$ and $p q=0$, then $D(p+q)=D(p)+D(q)$;
(iii) for any indexed chain of projections $\left\{e_{\lambda} ; \lambda \varepsilon \Lambda\right\}$ in $M, D\left(\vee_{\lambda=1} e_{\lambda}\right)$ $=\operatorname{Sup}\left\{D\left(e_{\lambda}\right), \lambda \varepsilon \Lambda\right\} ;$
(iv) if u is in $M_{p i}$, then $D\left(u^{*} u\right)=D\left(u u^{*}\right)$;
(v) for $e \varepsilon Z_{p}$ and $p \varepsilon M_{p}, D(e) \neq 0$ and $D(e p)=e D(p)$.
Now along the same lines with [8], we introduce the notion of the "convergence nearly everywhere" of sequences in \mathcal{C}.

Definition 1. We say that a sequence $\{x(n)\}_{n=1}^{\infty}$ of \mathcal{C} converges nearly everywhere (or converges n.e.) to an element x in \mathcal{C} if for any positive ε, there exist a positive integer $n_{0}(\varepsilon)$ and an SDD (strongly
dense domain (see [6, Definition 3.1])) $\left\{e_{n}(\varepsilon)\right\}$ such that $(x(n)-x)\left[e_{n}(\varepsilon), 1\right]$ $\varepsilon \bar{M}$ and $\left\|(x(n)-x)\left[e_{n}(\varepsilon), 1\right]\right\|_{\infty}<\varepsilon$ for all $n \geqq n_{0}(\varepsilon)$, where we write $\|[x, 1]\|_{\infty}=\|x\|$ (see [6, Theorem 3.1, Lemma 5.2]).

Remark. (1) We must note that a limit nearly everywhere is unique. Making use of the dimension function (Theorem 2), by the same way as that of I. E. Segal, we have: (2) if $\{x(n)\}_{n=1}^{\infty}$ and $\{y(n)\}_{n=1}^{\infty}$ are sequences in \mathcal{C} converging n.e. to x and y in \mathcal{C}, respectively, then $\{x(n)+y(n)\}_{n=1}^{\infty}$ converges to $x+y$ n.e., (3) let $\{x(n)\}_{n=1}^{\infty}$ be a sequence in \mathcal{C} which converges n.e. to x in \mathcal{C} and suppose that there is a central projection e which is σ-finite with respect to the center such that $x(n)[1-e, 1]$ $=0$ for all n, then there exists a strictly increasing subsequence $\left\{n_{i}\right\}$ of positive integers such that $\left\{x\left(n_{i}\right)^{*}\right\}_{n=1}^{\infty}$ converges n.e. to x^{*} and (4) in (3), for any y in \mathcal{C}, there are subsequences $\left\{k_{i}\right\}$ and $\left\{m_{i}\right\}$ of positive integers such that $x\left(k_{i}\right) y \rightarrow x y(i \rightarrow \infty)$ and $y x\left(m_{i}\right) \rightarrow y x(i \rightarrow \infty)$ nearly everywhere.

Theorem 3. There exists $a[0,+\infty]$-valued function τ (a faithful semi-finite trace) on M^{+}having the following properties:
(i) If $a, b \in M^{+}$, then $\tau(a+b)=\tau(a)+\tau(b)$;
(ii) if $a \varepsilon M^{+}$and λ is a positive number, $\tau(\lambda a)=\lambda \tau(a)$ (we recall here $0 \cdot+\infty=0$ by our conventions);
(iii) if $a \varepsilon M^{+}$and $u \varepsilon M_{u}, \tau\left(u^{*} a u\right)=\tau(a)$;
(iv) $\tau(a)=0\left(a \varepsilon M^{+}\right)$implies $a=0$;
(v) for any non-zero a in M^{+}, there is a non-zero b in $M^{+} m a-$ jorized by a such that $\tau(b)<\infty$;
(vi) let $\left\{a_{\alpha}\right\}$ be a directed increasing net of positive elements in M such that $a_{\alpha} \rightarrow a$ in the $\sigma(S)$-topology for some $a \varepsilon M$, then $\tau\left(a_{\alpha}\right) \uparrow \tau(\alpha)$.

Then, there are a two-sided ideal \mathcal{E}, whose positive part is $\left\{a ; a \varepsilon M^{+}, \tau(a)<\infty\right\}$ and a linear non-negative functional τ on \mathcal{E} coincides with τ on $\left\{a ; a \varepsilon M^{+}, \tau(a)<\infty\right\}$ with the following properties:
(a) $\dot{\tau}(x y)=\dot{\tau}(y x)$ if x or $\mathrm{y} \varepsilon \mathcal{E}, x$ and $y \varepsilon M$,
(b) $\dot{\tau}\left(u^{*} x u\right)=\dot{\tau}(x)$ if $x \varepsilon \mathcal{E}$ and $u \varepsilon M_{u}$.

Let \mathscr{F} be the set $\{a ; a \varepsilon M, \tau(\operatorname{LP}(a))<\infty\}$ (where $\operatorname{LP}(a)$ is the left projection of a in M), then \mathscr{F} is a two-sided ideal contained in \mathcal{E} such that $\mathcal{E}_{p}=\mathscr{F}_{p}$.

Definition 2. An element x in \mathcal{C} is integrable if there exists a sequence $\{x(n)\}_{n=1}^{\infty}$ in \mathscr{F} such that $[x(n), 1] \rightarrow x$ (n.e.) and $\dot{\tau}(|x(n)-x(m)|)$ $\rightarrow 0$ as n and $m \rightarrow \infty$. The integral of x, in symbol $\tilde{\tau}(x)$, is defined by $\tilde{\tau}(x)=\lim _{n \rightarrow \infty} \dot{\tau}(x(n))$. The set of all integrable elements in \mathcal{C} is denoted by $L^{1}(M, \tau)$.

Remark. Note first that the value $\tilde{\tau}(x)$ of the integral of x in fact exists and is finite and that it is uniquely determined by any particular such sequences. Moreover by remark (2) following Defini-
tion $1, \tilde{\tau}$ is linear on $L^{1}(M, \tau)$. Secondly we note that if $x \varepsilon \mathcal{E}$, then [$x, 1$] is integrable and its integral is equal to $\dot{\tau}(x)$.

By the remark following Definition 1, we have
Proposition 2. (1) For any $s \in M$ and $t \varepsilon L^{1}(M, \tau)$, $[s, 1] t, t[s, 1]$ and $t^{*} \varepsilon L^{1}(M, \tau)$. Moreover, $\tilde{\tau}([s, 1] t)=\tilde{\tau}(t[s, 1])$ and $\tilde{\tau}\left(t^{*}\right)=\overline{\widetilde{\tau}(t)}($ where $\bar{\alpha}$ is the complex conjugate of a complex number α).
(2) If $p\left(\varepsilon M_{p}\right)$ is integrable, then $p \varepsilon \mathcal{E}_{p}$ and $\tilde{\tau}([p, 1])=\dot{\tau}(p)$.
(3) For any $t \varepsilon L^{1}(M, \tau)$, we define $\|t\|_{1}=\operatorname{Sup}\{|\widetilde{\tau}([s, 1] t)|$, $s \varepsilon M$, $\|s\| \leqq 1\}$. Then the function $t \rightarrow\|t\|_{1}\left(t \varepsilon L^{1}(M, \tau)\right)$ satisfies actually the properties of a norm:
(a) $0 \leqq\|t\|_{1}<\infty$ for $t \varepsilon L^{1}(M, \tau)$ and $\|t\|_{1}=0$ if and only if $t=0$,
(b) $\|s+t\|_{1} \leqq\|s\|_{1}+\|t\|_{1}$ if $s, t \varepsilon L^{1}(M, \tau)$,
(c) $\|\lambda t\|_{1}=|\lambda| \cdot\|t\|_{1}$ if $t \varepsilon L^{1}(M, \tau)$ and λ is a complex number,
(d) $\|t\|_{1}=\left\|t^{*}\right\|_{1}$,
(e) if $s \varepsilon M$, then $\|[s, 1] t\|_{1} \leqq\|s\|\|t\|_{1}$ and $\|t[s, 1]\|_{1} \leqq\|s\|\|t\|_{1}$.
(4) The integral of a non-negative integrable element of \mathcal{C} is nonnegative.

Definition 3. Let $L^{2}(M, \tau)$ be the set $\left\{t ; t \varepsilon \mathcal{C}, t^{*} t=|t|^{2} \varepsilon L^{1}(M, \tau)\right\}$ and we define $\|t\|_{2}=\tilde{\tau}\left(|t|^{2}\right)^{1 / 2}$ for $t \varepsilon L^{2}(M, \tau)$.

Proposition 3. (1) If $s, t \in L^{2}(M, \tau)$, then $s^{*} t \varepsilon L^{1}(M, \tau)$ and $\left|\tilde{\tau}\left(s^{*} t\right)\right|^{2} \leqq\|s\|_{2}^{2}\|t\|_{2}^{2}$.
(2) $\|t\|_{2}=\sup \left\{\|t s\|_{1},\|s\|_{2} \leqq 1\right.$, ts $\left.\varepsilon L^{1}(M, \tau)\right\} \quad\left(f o r \quad t \varepsilon L^{2}(M, \tau)\right.$) and $L^{2}(M, \tau)$ is a pre-Hilbert space with respect to the norm \| $\|_{2}$. Moreover this norm satisfies:
(a) $\left\|t^{*}\right\|_{2}=\|t\|_{2}=\||t|\|_{2}$ for $t \varepsilon L^{2}(M, \tau)$,
(b) for any $s \in M$ and $t \varepsilon L^{2}(M, \tau),[s, 1] t$ and $t[s, 1]$ are in $L^{2}(M, \tau)$. Moreover $\|[s, 1] t\|_{2} \leqq\|s\|\|t\|_{2}$ and $\|t[s, 1]\|_{2} \leqq\|s\|\|t\|_{2}$.

Theorem 4. $\overline{\mathcal{F}}(=\{[x, 1], x \in \mathscr{F}\})$ is norm-dense in $L^{2}(M, \tau)$ and $L^{1}(M, \tau)$, respectively. Moreover $L^{1}(M, \tau)\left(r e s p . L^{2}(M, \tau)\right)$ is a Banach space with respect to the norm $\left\|\|_{1} \text { (resp. \| }\right\|_{2}$). In particular, $L^{2}(M, \tau)$ is a Hilbert space.

Now let us consider the left regular representation of M, which is defined by $\pi_{l}(x) a=[x, 1] a, a \varepsilon L^{2}(M, \tau), x \varepsilon M$. Then by Proposition 3 , $\pi_{l}(x)$ is a bounded linear operator on $L^{2}(M, \tau)$ for each $x \varepsilon M$. On the other hand $\pi_{l}(x)=0$, then $[x, 1] a=0$ for all $a \varepsilon L^{2}(M, \tau)$. Since τ is semi-finite, there is an orthogonal set $\{e(\alpha)\}$ of projections in \mathscr{F} such that $\sum e(\alpha)=1$. Therefore $\overline{\mathscr{F}} \subset L^{2}(M, \tau)$ implies that $x e(\alpha)=0$ for all α. Hence by [4, Lemma 2.2], $x=0$. Therefore $\pi_{l}(\cdot)$ is a $*$-isomorphism of M into $B\left(L^{2}(M, \tau)\right.$) (where $B\left(L^{2}(M, \tau)\right)$ is the algebra of all bounded linear operators on $L^{2}(M, \tau)$).

Let $\left\{g_{i}\right\}_{i_{11}}$ be a set of mutually orthogonal projections of M with $e=\sum_{i \in 1} g_{i}$, then for each $a \varepsilon \mathscr{F}$

$$
\begin{gathered}
\left\|\pi_{l}(e)[a, 1]-\sum_{i, J} \pi_{l}\left(g_{i}\right)[a, 1]\right\|_{2}^{2} \\
=\dot{\tau}\left(a^{*}\left(e-\sum_{i \in J} g_{i}\right) a\right)
\end{gathered}
$$

for any finite subset J of I. Therefore by Theorem 3 (v) and Theorem 4 , $\sum_{i \in J} \pi_{l}\left(g_{i}\right) \rightarrow \pi_{l}(e)$ strongly. Thus $\pi_{l}(M)$ is an $A W^{*}$-subalgebra of $\boldsymbol{B}\left(L^{2}(M, \tau)\right)$ in the sense of [5.3, Definition].

Let \boldsymbol{M} be the weak closure of $\pi_{l}(M)$, then \boldsymbol{M} is a von Neumann algebra on $L^{2}(M, \tau)$.

Theorem 5. $\pi_{l}(M)=M$, that is, M is a semi-finite W^{*}-algebra.

References

[1] J. Dixmier: Sur certains espaces considérés par M. H. Stone, Summa Brasil. Math., 2, 151-182 (1951).
[2] -: Les algèbres d'opérateurs dans l'espace hilbertien. Gauthier-Villars, Paris (1957).
[3] J. Feldman: Embedding of $A W^{*}$-algebras. Duke Math. J., 23, 303-307 (1956).
[4] I. Kaplansky: Projections in Banach algebras. Ann. of Math., 53, 235249 (1951).
[5] -: Algebras of type. I. Ann. of Math., 56, 460-472 (1952).
[6] K. Saitô: On the algebra of measurable operators for a general $A W^{*}$ algebra. Tôhoku Math. J., 21, 249-270 (1969).
[7] S. Sakai: The theory of W^{*}-algebras. Mimeographed Note, Yale Univ. (1962).
[8] I. E. Segal: A non-commutative extension of abstract integration. Ann. of Math., 57, 401-457 (1953).

