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We shall extend Feldman’s result on "Embedding of AW*-alge-
bras" to semi-finite AW*-algebras, that is, we shall show that a semi-
finite AW*-algebra with a separating set o states which are completely
additive on projections (c.a. states) has a aithful representation as a
semi-finite von Neumann algebra. Full proofs will appear elsewhere.

Let M be a semi-finite AW*-algebra with a separating set of
c.a. states. By a c.a. state on M we mean a state on M such that
or any orthogonal family of projections {e,} in M with e-.,e, (e)
=,, O(e,). Let C be the algebra of "measurable operators" affiliated
with M [6]. Denote the set of all positive elements, projections, par-
tial isometries and unitary elements in M by M/, M, M, and M,
respectively.

Let (R) be the set of finite linear combinations of elements in {a*wa,
(o (R), a e M}, where (a*wa)(x)=w(axa*) or all x e M. For any posi-
tive number and any positive integer n, put V,,(w, w,..., w)(0)

{a w(a)] e, i- 1, 2,... n, w, w,..., Wn e (R)} and we define the a()-
topology of M by assigning sets of the form V,.,(w, w,..., w)(0)to
be its neighborhood system o 0. Since (R) is a separating set of con-
tinuous linear unctionals on M, this topology is the separated locally
convex topology defined by the family ot semi-norms q,.(x) -Iw(x)I, w e.
Then we have, by [3, Lemma 3],

Lemma 1. Let {e.) e A be an orthogonal set of projections in M
such that e-Sup [(e., e I), AI F(A) where F(A) is the family
of all finite subsets of A], then (e., e I)-e(I e F(A)) in the a()-
topology.

Lemma 2. Any abelian AW*-subalgebra, especially, the center
Z of M is a W*-algebra ([7]) and the a((R))-topology restricted to this
subalgebra is equivalent to the a-topology on bounded spheres.

Let Z be the set of all [0, / c]-valued continuous functions on the
spectrum of Z [1], then we have

Theorem 1. There is an operation from M+ to Z having the
following properties"

) (h/ h)-(h) /(h) h, h e i+

( ii ) (h)- (h) if is a positive number and h e M/;
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(iii) (st)--t.(s)scM+, feZ+;
( iv ) (uau-)=O(a) if a e M/ and u e M
( v ) for any a M/ with (a)-O,a=O;
( vi for every directed increasing net {a} in M/ such that

in the a()-topology for some a in M, (a) (a) in Z;
(vii) for every non-zero a in M/, there exists a nonzero b M/

ma]orized by a such that (b) Z+.
Then by the above theorem and [3, Lemma 2], we hve
Proposition 1. In Theorem 1, let be the set {s M, s>=O,

(s) Z/}, then (_P is the positive part of a two-sided ideal and there
exists a unique linear operation on to Z which coincides with on
c_p moreover this linear operation satisfies the following properties;

(a) If te with t_O and (t)-O only if t-0;
(b ) (st)=(ts) if s M and t
(c) (st)-s. (t) if s e Z and t e
( d) let {t,} be a directed increasing net of positive elements in

such that t,--.t in the a((R))-topology for some positive element t in M
and if {(t,)} is uniformly bounded, then t e and (t)- Sup {(t,),/}

( e ) every non-negative element in M is the supremum of a set
of non-negative elements in .

Now let p be a finite projection in M then there is an indexed
family {e,} of mutually orthogonal central projections such that

1 and that for each/ pMe,p is a a-finite finite AW*-algebra. There-
fore by Proposition l(e), there is a sequence {p(,)}: of mutually

orthogonal projections in such that pe,=.p"). Write D(p), . (p,)) in Z. I2 p is a properly infinite projection with central

carrier z(p), D(p)(w) is defined as c. z(p)(o), thus we have
Theorem 2. In M, we can define a dimension function D(e) with

values in Z for all projections e e M, in such a way that
( i ) D(e)((o) c except on a non-dense set if and only if e is

finite;
( ii ) if p, q e M and pq-0, then D(p+q)=D(p)+D(q);
(iii) for any indexed chain of projections {e e A} in M, D(/e)

2A

=Sup {D(e), 2 A};
(iv) if u is in M, then D(u*u)-D(uu*)
( v ) for e e Z and p e M, D(e):/:0 and D(ep)= eD(p).
Now along the same lines with [8], we introduce the notion of the

"convergence nearly everywhere" of sequences in C.
Definition 1. We say that a sequence {x(n)}= o converges

nearly everywhere (or converges n.e.) to an element x in 5 if or any
positive e, there exist a positive integer n0(e)and an SDD (strongly
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dense domain (see [6, Definition 3.1])) {en($)} such that (x(n)--x)[e(e),l]
e M and II(x(n)-x)[e(e), 1]l[(e or all n>=no(e), where we write
If[x, 1]11= lixll(see [6, Theorem 3.1, Lemma 5.2]).

Remark. (1) We must note that a limit nearly everywhere is
unique. Making use of the dimension function (Theorem 2), by the
same way as that of I. E. Segal, we have" (2) if {x(n)}: and {y(n)}.:
are sequences in C converging n.e. to x and y in C, respectively, then
{x(n) + y(n)}: converges to x + y n.e., (3) let {x(n)}: be a sequence in C
which converges n.e. to x in C and suppose that there is a central projec-
tion e which is a-finite with respect to the center such that x(n)[1--e, 1]
-0 for all n, then there exists a strictly increasing subsequence {n}
of positive integers such that {x(n)*}: converges n.e. to x* and (4)
in (3), for any y in C, there are subsequences {k} and {m} of positive
integers such that x(k)y-xy(i--.oo) and yx(m)oyx(i--.oo) nearly
everywhere.

Theorem 3. There exists a [0, + c]-valued function v (a faithful
semi-finite trace) on M/ having the following properties"

( i If a, beM+, thenv(a+b)=r(a)+r(b);
( ii ) if a e M+ and is a positive number, v(2a)-2v(a)(we recall

here O. + c-O by our conventions);
(iii) if a e M+ and u e M, r(u*au)-r(a)
( iv ) r(a) 0 (a e M+) implies a 0
( v ) for any non-zero a in M+, there is a non-zero b in M+ ma-

]orized by a such that v(b) c;
(vi) let {a.} be a directed increasing net of positive elements in

M such that a.-a in the a()-topology for some a M, then v(a.) v(a).
Then, there are a two-sided ideal ’, whose positive part is

{a; a e M/, v(a) c} and a linear non-negative functional on " coin-
cides with r on {a; a M/, v(a)< c} with the following properties"

(a) (xy)=(yx) if x or y e ’, x and y e M,
(b) (u*xu)-2(x) if x e C and u e M.
Let F be the set {a; a e M, v(LP(a)) c} (where LP(a) is the left

projection of a in M), then is a two-sided ideal contained in such
that C .

Definition 2. An element x in C is integrable if there exists a
sequence {x(n)}:x in ff such that [x(n), 1]-.x(n.e.) and (Ix(n)- x(m) I)
-0 as n and m-.oo. The integral of x, in symbol r(x), is defined by
v(x)=lim (x(n)). The set of all integrable elements in C is denoted

by L(M, r).
Remark. Note first that the value (x) of the integral of x in

fact exists and is finite and that it is uniquely determined by any
particular such sequences. Moreover by remark (2) following Defini-
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(a)
(b)
(c)
(d)
(e)
(4)

negative.

tion 1, is linear on L(M, v). Secondly we note that i x e L’, then
[x, 1] is integrable nd its integral is equal to (x).

By the remark following Definition 1, we have

Proposition 2. (1) For any s M and t e L(M, v), [s, 1Jr, t[s, 1]
and t* L(M, v). Moreover, V([s, 1]t)--(t[s, 1]) and (t*)=’(t) (where- is the complex conjugate of a complex number r).

(2) If p(e M) is integrable, then p and ([p, 1])-(p).
(3) For any t e L(M, ), we define t ll- Sup {Iv([s, 1101, s M,

]lsl]_<_l}. Then the function tlltll(t L(M, )) satisfies actually the
properties of a norm"

0 <= t I1 c for t e L(M, v) and t I]- 0 if and only if t O,
I[s + till<= [[sill + [Itll if s, t e LI(M, r),
112tll=-121" Iltll i t L(M, ) and 2 is a complex number,

if s M, then II[s, 1]tll<=l]slll]tll and IIt[s, 1]]l<=llslllltl}.
The integral of a non-negative integrable element of is non-

Definition 3. Let L(M, v) be the set {t; t 5’, t’t= ]tl LI(M, v)}
and we define t I1= (Itl)/ for t e L(M, ).

Proposition 3 (1) If s, t L(M, ), then s*t e L’(M, ) and

(2) Iltll=sup {lltsll, IIsll, ts L(M, r)} (for t L(M, r)) and
L(M, ) is a pre-Hilbert space with respect to the norm ll. More-
over this norm satisfies"

(a) Ilt*ll-lltll=ll Itl 2 for te L(M, v),
(b) for any s e M and t e L(M, ), [s, 1Jr and t[s, 1] are in L(M, ).

Moreover ll[s, 1]tllg IIsll lltl] and lit[s,
Theorem 4. (--{[x, 1],xe }) is norm-dense in L(M, ) and

L(M, v), respectively. Moreover L(M, ) (resp. L(M, )) is a Banach
space with respect to the norm (resp. ). In particular,
L(M, ) is a Hilbert space.

Now let us consider the left regular representation of M, which
is defined by u(x)a= [x, 1]a, a e L(M, ), x M. Then by Proposition
3, (x) is a bounded linear operator on L(M, v) or each x e M. On
the other hand (x)-0, then [x, 1]a-0 for all a L(M, ). Since v is
semi-finite, there is an orthogonal set {e(a)} of projections in such
that e(a) 1. Therefore L(M, ) implies that xe(a)-- 0 for all
a. Hence by [4, Lemma 2.2], x-0. Therefore (.) is a ,-isomorphism
o M into B(L(M, v)) (where B(L(M, v)) is the algebra o all bounded
linear operators on L(M, )).

Let {g}. be a set of mutually orthogonal projections of M with
e= g, then for each a

il
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zr(e)[a, 1]-] (g)[a, 1] II
(a*(e-- g)a)

or any finite subset J of I. Therefore by Theorem 3 (v) and Theorem
4, , (g)-*(e) strongly. Thus (M) is an AW*-subalgebra o
B(L(M, v)) in the sense of [5.3, Definition].

Let M be the weak closure o (M), then M is a von Neumann
algebra on L(M, v).

Theorem 5. (M)--M, that is, M is a semi-finite W*-algebra.
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