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Throughout this paper we assume that spaces are completely
regular Tl-spaces and maps are continuous. The completion of a space
X with respect to its finest uniformity is called the topological comple-
tion of X, and denoted by/X. According to Morita [8] a space X is
called pseudoparacompact (resp. pseudo-LindelSf) if/X is paracompact
(resp. LindelSf).

As for these notions, in the same paper Morita proved the follow-
ing remarkable results.

Theorem 1 (Morita [8], Theorems 3.1, 3.2 and 3.5).
(1) /X is compact iff X is pseudocompact.
(2) pX is always a paracompact M-space for any M-space X.
(3) Let X be an M-space. X is pseudo-Lindel6f iff it is the quasi-

perfect inverse image of a separable metric space.
The characterizations of pseudoparacompactness and pseudo-

LindelSfness have been obtained by Howes [4] and Ishii [5] independ-
ently. On the other hand, in [2] Hanai and Okuyama (cf. Isiwata [6])
essentially proved the ollowing result: "If a space X is the inverse
image of a pseudocompact space under an open quasi-perfect map,.
then X is pseudocompact". Here the assumption that the map is open
cannot be dropped in general ([3] Example 2.4). Analogously to this
result, in 1 we shall prove the following theorem which is a partial
answer to a problem posed by Ishii [5] concerning (2) and (3) o
Theorem 1: "Is pseudoparacompactness or pseudo-Lindel6fness pre-
served under taking the inverse image by a quasi-perfect (or perfect)
map 7"

Theorem 2. If there is an open quasi-perfect map 9 X-Y from
a space X onto a pseudoparacompact (resp. pseudo-Lindel6f) space Y,
then X is pseudoparacompact (resp. pseudo-Lindel6f).

In 2, by virtue o recent results obtained by Morita, we shall
prove the ollowing

Theorem 3. Let 9" XY be an open quasi-perfect map from a
space X onto a space Y.

(1) If IY is locally compact and paracompact, then so is tX.
(2) If/Y is a-compact, then so is IX.
1o Proof of Theorem 2 Before proving Theorem 2, we shall
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need some preliminalies. For a space X, let/2 be the finest uniformity
of X and , the uniformity oi all countable normal coverings of X.

Lemma 1.1 (Howes [4]). A space X is pseudoparacompact (resp.
pseudo-Lindel6f) iff for any weakly Cauchy filter with respect to
(resp. ) there exists a Cauchy filter (R) with respect to [2 containing

Here a filter in X is called weakly Cauchy with respect to a uni-
formity/2 of X if for any uniform cover 1t in g there is a filter (R) in X
containing such that G U holds for some G e (R) and U

Let C(X) be the family of all non-empty compact subsets of. a given
space X. Following the convention of [7], we topologize C(X) with the
Vietoris topology;for a finite collection {U, U,..., U} of open sets,
(U, U.,..., U} will denote the subset of C(X) to which the compact
set K belongs iff K U and K f U :/= I for i- 1, 2, ., n. Open sets
in L’(X) are unions of an arbitrary number of these sets.

Lemma 1.2 (Michael [7]). C(X) is completely regular and T iff X
is completely regular and T.

A space X is called topologically complete if [2X--X (cf. [8]).
Lemma 1.:3 (Zenor [10]). (X) is topologically complete iff X is

topologically complete.
A subset F of a space X is called relatively pseudocompact if every

real-valued continuous function over X is bounded on F.
Lemma 1.4 (Dykes [1]). If F is a relatively pseudocompac subse

of a topologically complete space X, then clxF is compact.
A map : X-Y is called a Z-map if the image of each zero-set in

X is closed in Y. In [6], Isiwata extended the notion of Z-maps; a
map : XY is a WZ-map if clz-(y)=fl()-(y) for every y in Y,
where () denotes the Stone extension of .

The following lemma is useful.
Lemma 1.. Let X--Y be a map from X onto Y such that

-(y) is relatively pseudocompact for each y in Y. For y in Y, let us
put (y)--clx-(y). If is an open WZ-map, then the mapping

from Y into C([2X) is continuous. Conversely if ( is continuous then
is open, and moreover if X is normal then is closed.

Proof. Clearly maps Y into C(12X) by Lemma 1.4. Let ? be an
open WZ-map, and or y in Y let (y) e (U, U, ..., U, where U is
an open set iI1/X or each i. I we choose an open set U’ in /X such
that U’ N/x=u U, then the set V= 9(UNX)N(flY-flg(flX-U’))
is an open set in Y containing y since 9 is an open WZ-map and
clxg-(y) is compact. Moreover we easily see p(V)(U, U2, ..., U}.
Therefore p is continuous. Conversely let us assume is continuous.
Let U be an open set in X and choose an open set U’ in gX such that
U’ N X= U. Then 9(U)=-((U’, FX} N p(Y)). Hence 9 is open. Now,
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let us assume X is normal. For a closed set F in X, let us put
--{K e C(/X) lcl,xF K:/: )}. Then is closed in 5’(/X), and (F)
_-l((y)). Therefore is closed. This proves Lemma 1.5.

Theorem 2 is an immediate consequence o the ollowing

Theorem 4. Let " X-Y be an open WZ-map from a space X
onto a pseudoparacompact (resp. pseudo-Lindel6f) space Y such that
-l(y) is relatively pseudocompact for each y in Y, then X is pseudo-
paracompact (resp. pseudo-Lindel6f).

Proof. Let be a weakly Cauchy filter in X with respect to /
(resp. ,). Then the filter () is weakly Cauchy with respect to /
(resp. ,) since is continuous. Moreover since Y is pseudoparacompct
(resp. pseudo-LindelS), by Lemma 1.1 there exists a Cauchy filter (R)

in Y with respect to /, which contains (). Let be a map as in
Lemma 1.5, then ((R)) is also a Cauchy filter in C(/X) with respect to
/ since is continuous. Therefore since C(/X) is topologically cmplete
by Lemma 1.3, ((R)) converges to some K in 5"(/X). Let us suppose
that {clxFIFe}K--. Since K is compact, it follows that

clxF K-- for some F e . This means that K e (/X-clxF. Since
((R)) converges to K, there exists G in (R) such that (G)(/X-cl,xF}.
Then it is easily seen that -GX-F. But this contradicts that
()(R). Hence has a cluster point in K. This shows that is
contained in a Cauchy filter in X with respect to /. Therefore X is
pseudoparacompact (resp. pseudo-LindelSf) by Lemma 1.1. The proof
is completed.

Remark. Under the map " XY given in Theorem 4, let us
assume that Y is pseudocompact and consider in the proof above to
be a weakly Cauchy filter with respect to the uniformity of all finite
normal coverings, then under the same argument as above, by ([4],
Theorem 3) we can conclude that X is pseudocompact. This is an
another proof of ([6], Theorem 4.2).

As an application of Theorem 4 we have
Theorem 5. Let X be a pseudocompact space and Y a first coun-

table and pseudoparacompact (resp. pseudo-Lindel6f) space. Then
X Y is pseudoparacompact (resp. pseudo-Lindel6f).

Proof. Since the projection X YY is a Z-map by ([6], Theorem
2.1), this follows from Theorem 4.

2. Proof of Theorem :. Theorem 3 is a direct consequence of
the fllowing lemma and theorems which are due to Morita.

Lemma 2.1. Let " X-Y be an open WZ-map from X onto Y
such that -(y) is relatively pseudocompact for each y in Y. If F is a
relatively pseudocompact subset of Y, then -(F) is relatively pseudo-
compact.
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Proof. For any real-valued continuous function f on X, let us
define real-valued unctions fs and fi on Y by

fS(y)--sup {f(x) x e -l(y)}, fi(y) inf {f(x) x e -l(y)}.
Then f and f are continuous by ([6], Lemma 4.1) and bounded on F.
Hence f is bounded on -I(F) and this proves Lemma 2.1.

Theorem 6 (Morita [9]). For a space X, [X is locally compact
and paracompact iff there exists a normal open covering of X consist-
ing of relatively pseudocompact subsets.

Theorem 7 (Morita). For a space X, IX is a-compact iff X is
expressed as a union of a countable number of relatively pseudocompact
subsets.

Proof. Let /X= 3 {Kli=l, 2, .}, where each Ki is compact.
Then X (K X) and since X is C-embedded in X by ([8], Theorem
2.4), KX is relatively pseudocompact. Conversely, suppose that
X-- @ {Fi[i--1, 2, ..}, where each F is relatively pseudocompact.
Let us put Y--J clxF. Then XYaX and Y is a a-compact space
by Lemma 1.4. Therefore by ([8], Theorem 2.5) it holds that Y--IX.
Hence pX is a-compact and this completes the proo of Theorem 7.
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